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Abstract—Emerging latency-critical (LC) services often have
both CPU and GPU stages (e.g. DNN-assisted services) and
require short response latency. Co-locating best-effort (BE) appli-
cations on the both CPU side and GPU side with the LC service
improves resource utilization. However, resource contention often
results in the QoS violation of LC services. We therefore present
CHARM, a collaborative host-accelerator resource management
system. CHARM ensures the required QoS target of DNN-
assisted LC services, while maximizing the resource utilization
of both the host and accelerator. CHARM is comprised of a
BE-aware QoS target allocator, a unified heterogeneous resource
manager, and a collaborative accelerator-side QoS compensator.
The QoS target allocator determines the time limit of an LC
service running on the host side and the accelerator side. The
resource manager allocates the shared resources on both host
side and accelerator side. The QoS compensator allocates more
resources to the LC service to speed up its execution, if it runs
slower than expected. Experimental results on an Nvidia GPU
RTX 2080Ti show that CHARM improves the resource utilization
by 43.2%, while ensuring the required QoS target compared with
state-of-the-art solutions.

I. INTRODUCTION

Intelligent Latency-Critical (LC) services running on data-

centers require consistently high accuracy and low response

time to attract and retain users [22]. Many LC services have

widely adopted Deep Neural Networks (DNNs), as the recent

advances have made DNNs achieve human-level accuracy on

various tasks (e.g., digit/image recognition, and speech recog-

nition). Modern DNN-assisted LC services have two stages:

data preprocess and inference. Since DNNs are more and

more compute-demanding, heterogeneous accelerators (such

as GPUs) are often used for inference, and the host (CPU) is

used for data preprocessing, including decoding and data re-

sizing [13]. The host-accelerator interaction stage (Memcpy)

is supported by the PCI-e bus. Cloud gamings, another fast-

growing LC service, also have both host-stage (Game logic)

and accelerator stage (Rendering graphics).

Because LC services often experience a diurnal pattern [2]

(leaving the resources under-utilized for most of time except

peak hours), it is cost-effective to co-locate the LC services

with low-priority, best-effort (BE) applications that have no

QoS requirements. However, the co-location may bring per-

formance penalty for LC services and lead to QoS violation,

as co-scheduled applications contend for shared resources.

Quan Chen and Minyi Guo are the corresponding authors.

Fig. 1: The CPU/GPU execution time in one query of different

LC services with different batchsize.

Prior work has recognized the problem and proposed tech-

niques to guarantee QoS and improve resource utilization on

both CPUs and accelerators [7], [8], [10], [21], [23], [26], [29],

[31], [32], [34]. Existing efforts on CPU co-location generally

use two approaches. The first approach disallows LC services

from sharing resources with other applications to avoid inter-

ference or allows only certain co-locations based on profiling

and instrumentation information [23], [32]. The second one

is dynamically managing interference by throttling resources

of BE applications to ensure the LC service’s QoS [8],

[26]. Managing performance interference on accelerators is

also well-studied. On time-sharing accelerators, queuing-based

methods (e.g., GrandSLAm [18] and Baymax [7]) reorder the

GPU kernels. On spatial multitasking accelerators, profiling-

based methods (e.g., Laius [30]) partition processing elements

between LC service and BE application.

Unfortunately, prior researches are limited to the co-location

on either CPU or the accelerator, respectively. They are not

general enough to manage these new application scenarios

where LC services have both host-stage and accelerator-stage.

There are new challenges in managing heterogeneous co-

location which needs to be solved urgently.

Firstly, it is hard to appropriately split the entire QoS target
into two parts that maximize resource utilization. As shown

in Figure 1, services from Table III spend different time on

host-stage and accelerator-stage, and the same service spends

different time on the two stages with different batch sizes. In

this case, the appropriate QoS target quotas of the two stages

vary when the load or the co-located BE applications change.

A viable option is traversing all possible combinations, but

this method is expensive and unsuitable for online situations.

Secondly, the independent management results in the QoS
violation. For the host stage, the query may run longer than
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expected. If the profiling-based resource management method

is adopted in the host stage, the LC service suffers from

QoS violation when the latency prediction is inaccurate. Prior

work [5] shows that the accuracy of profiling-based meth-

ods on CPU is around 80%. If the feedback-based resource

management method is adopted, LC service suffers from QoS

violation when the feedback mechanism is not timely enough.

The delay caused by the feedback cannot be compensated even

if sufficient resources are provided.

We therefore introduce CHARM, a heterogeneous runtime

system that meets two objectives: satisfy QoS target for the

LC service and maximize performance of all BE jobs on both

CPUs and GPUs. CHARM is comprised of a BE-aware QoS
target allocator, a unified heterogeneous resource manager,

and a collaborative accelerator-side QoS compensator.

The QoS target allocator builds a heuristic method to split

the QoS target of an LC service for the host-stage and

accelerator-stage. The QoS allocation is determined by the LC

service itself and the current BE applications on both host-

side and the accelerator-side. The unified resource manager

provides theoretically-grounded resource partitioning of host

and accelerator resources among the co-located applications.

It makes the overall resource utilization more efficient and

economical while ensuring QoS of the LC service. The

manager does not build complex performance models that

need extensive offline profiling or recompilation. The QoS

compensator adjusts the resource allocation of the accelerator

stage online according to the performance of the host stage.

It avoids unpredictable QoS violations caused by host-stage

contention. In this work, we rely on the bandwidth reservation

technique proposed in Baymax [7] to ensure that an LC query

can always transfer data at full speed, thus eliminates QoS

violation which is resulted from PCIe bandwidth contention.

The main contributions of CHARM are as follows:

• Comprehensive analysis of QoS interference on het-
erogeneous systems - The analysis reveals new opportu-

nities to ensure QoS while maximizing utilization through

collaborative heterogeneous resource management.

• The design of a unified resource management solu-
tion - We use an improved SMAC (Sequential Model-

Based Optimization for General Algorithm Configura-

tion) method that requires a small number of samples

to build low-cost performance model and navigate this

search space intelligently to find near-optimal unified

configurations.

• The design of online process perceptron for identifying
potential QoS violation - Once the query is perceived

to be slower than expected, accelerator-side compensator

allocates more resources to compensate for the lag.

II. RELATED WORK

There have been some researches that focus on improv-

ing the resource utilization of CPU datacenters. Bubble-

up [23] predicted the interference caused by CPU colocation.

SMiTe [32] further extended Bubble-up to predict perfor-

mance interference between applications on SMT processors.

Dirigent [34] proposed a lightweight technology to build

accurate performance profiles for LC tasks and adjust resource

allocation accordingly based on the predicted results. There

are some works using feedback mechanisms to adjust the

resource division to eliminate resource contention [8], [21],

[25]. When the QoS violation of the LC task is identified, the

feedback scheduler dynamically adjusts the resource division

of the BE task to ensure the QoS. Twig and CLITE [24],

[26] adopted a black-box optimization method to divide each

service’s resources in the co-located server to maximize the

throughput of BE tasks. These works do not consider the

accelerator-side as CHARM does.

There are also works devoted to optimizing GPU resource

utilization. TimeGraph [19] and GPUSync [12] used priority-

based scheduling to guarantee the performance of real-time

kernels. Baymax and GrandSLAm [7], [18] predicted the

kernel duration and reordered the kernel based on the QoS

headroom of user-facing queries. Prophet [6] designed the

interference model to accurately predict the performance

loss caused by resource competition in GPUs. They all as-

sumed that the accelerator is time-sharing and non-preemptive.

HSM [33] predicted the slowdown of co-located applications

on spatial multitasking GPUs. However, it relies on a broad

spectrum of performance event statistics not available on real

system GPUs. Laius [30] focuses on partitioning to fulfill

QoS of the LC job and improving utilization by leveraging

resource equivalence. These works do not consider the host-

side contention, and cannot improve both host and accelerator

utilization, as CHARM does.

Besides, there are some works that focus on efficient co-

execution of applications on GPU-based clusters and cloud

servers. Mystic [28] is a framework enabling interference-

aware scheduling for GPU workloads. Li et al. introduced a

priority-based PCIe scheduling policy and the semi-QoS appli-

cation management on CPU-GPU communication to improve

multi-GPU throughput [20]. These works do not consider the

characteristics of multi-stage tasks, and cannot improve the

overall cluster resource utilization, as CHARM does.

III. MOTIVATION AND CHALLENGES

In this section, we first investigate the efficiency of state-of-

the-art scheduling policies at both host and accelerator sides

on maximizing utilization and ensuring QoS of LC services

in terms of tail latency. Then, we analyze why previous work

fails to handle these LC services, and discuss the opportunities

to use collaborative resource scheduling.

A. Investigation Setup

We co-locate a typical DNN-assisted LC service (realized

by Resnet), selected from Table III, with both host-side BE

applications and accelerator-side BE applications. As shown

in Table I, we use three benchmarks in Parsec [3] as host-

side BE applications and eight benchmarks in Rodinia [4] as

GPU-side BE applications. To enable the integration between

host-side and accelerator-side solutions, we adopt Clite [26]

on host-side and Laius [26] on accelerator-side to manage the
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TABLE I: The benchmarks used as the BE applications.

Benchmark Suite BE Workloads
Parsec [3] SC (streamcluster), CA (canneal), BS (blackscholes)

Rodinia [4]
BFS, B+tree, PF (pathfinder), NW, LUD

HS (hotspot), MD (lavaMD), MY (myocyte)

Fig. 2: The CPU and GPU execution time in one query for

different DNN-assisted LC services at co-location.

shared resources between the co-located applications. Similar

to prior work targeting traditional LC services, we use 150 ms

as the QoS target here [7].

B. Problem of QoS Violation

When we combine Clite with Laius, the QoS target of an

LC service should be divided into the QoS target on the host

side for Clite, and the GPU side for Laius. As the LC services

have different characteristics, there is no optimal division that

fits all services. To find the best division for each co-location

pair, we use the static optimal division in this experiment. For

instance, if the QoS target of an LC service is 100ms, we try

to use the division of (10ms, 90ms), (20ms, 80ms), (30ms,

70ms), etc. This experiment reports the latencies of the LC

service with the best static QoS target division between CPU

phase and GPU phase.

Figure 2 reports the normalized 99%-ile latencies of LC

services (normalized to QoS targets) when they co-located

with BE applications on both CPU and GPU side. We change

the load every ten minutes during runtime. The load range is

determined according to Figure 3 that shows the 95%-ile tail

latency of Transform (CPU stage of Resnet) at different loads.

And the maximum load is 80 queries per second.

In Figure 2, “Origin Allocation” means that the co-located

applications contend for the shared resources with OS schedul-

Fig. 3: The 95th percentile tail-latencies of transform (CPU

stage of Resnet) at different loads.
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50.

ing. The x-axis shows the co-location pairs. For instance,

resnet+BS+BFS shows the case that the LC service resnet
is co-located with benchmark BS on CPU and BFS on GPU.

As observed from Figure 2, LC services in 13 out of the 24

co-locations suffer from the QoS violation with Clite+Laius,

while 20 QoS violations with OS-scheduling. To better under-

stand the QoS violation with Clite+Laius, we take a particular

mix of co-location Resnet+BS+NW as an example.

Figure 4 shows the amount of resources allocated to the

LC service and the co-located BE applications at different

sampling steps. Observed from Figure 4, even if the load of the

LC service is stable, Clite+Laius needs 40 samples to find the

near-optimal resource allocation in where 15 samples facing

QoS violations. During the sampling and searching for the best

configuration, last-level cache, memory bandwidth, and SMs

in GPU vary significantly.

In addition, we also investigate the ability of Clite+Laius in

adapting to the dynamic loads of the LC services. We increase

the load of Resnet from a low load to a high load at sample

50 and report the QoS score of Resnet in Figure 5. Observed

from this figure, Clite+Laius can tune the resource partition

between the co-located applications and stabilize to a new

optimal resource partition, with a relatively long tuning time.

Therefore, Clite+Laius is not applicable for heterogeneous
co-location of LC services with load variation and BE jobs.

C. Opportunity and Challenges

The above investigation has shown state-of-the-art work

is not applicable for co-locating LC services with varying

load with BE applications. We therefore propose CHARM,

a collaborative host-accelerator resource management system,

to take advantage of this opportunity.
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However, three challenges have to be resolved in CHARM.

• It is challenging to identify QoS target divisions
between CPU and GPU phases. The decision should

be based on the characteristics of the current running BE

applications on the host side and the accelerator side.

• It is challenging to identify the optimal resource
allocation quickly enough for dynamic service loads.
When there are many types of to-be-allocated resources,

the multi-dimensional search space is prohibitively large.

CHARM explores less expensive scheduling methods.

• It is challenging to eliminate the QoS violation when
searching for the optimal resource allocation. CHARM

should identify the LC queries that spend longer time than

expected quickly at runtime, and compensate the lag for

ensuring the QoS.

IV. OVERVIEW OF CHARM

In this section, we describe the methodology of CHARM
that maximizes the throughput of BE jobs on both host and

accelerator while guaranteeing the QoS of LC services.

Figure 6 demonstrates the design overview of CHARM.

It is comprised of a BE-aware QoS target allocator, a uni-
fied heterogeneous resource manager, and a collaborative
accelerator-side QoS compensator. As shown in Figure 6,

CHARM handles LC queries and BE applications in different

ways. Once an LC query is submitted, the QoS target allocator

splits its QoS target to CPU side QoS target and GPU side QoS

target heuristically. It then passes the divisions to the unified

resource allocator as the initial sample points to search for

the best resource allocation. The resource allocator identifies

the optimal resource allocation that maximizes the economical

throughput of BE jobs while guaranteeing the QoS of LC

services. Moreover, the collaborative compensator monitors

the progress of the query’s CPU stage. It speeds up its

accelerator-side execution if the query spends a long time on

CPU than its CPU side QoS target.

Let Q represent the LC service. CHARM manages the

resource allocation for Q in the following steps.

(1) The QoS target allocator builds a performance model for

Q based on the characteristics of the currently running BE jobs

on CPU and GPU. Based on the model, CHARM proposes a

heuristic method to splits its QoS target to the CPU and GPU

phases of Q. The QoS target division is passed to the unified

heterogeneous resource manager as the initial sample point

(Section V-A). This step significantly impacts the number of

tries needed to identify the best resource allocation later.

(2) Once the QoS target of Q is split, the resource man-

ager allocates various resource configurations (cores, memory

bandwidth, LLC, SMs) to Q and the co-located BE applica-

tions on the CPU and GPU side based on the optimized SMAC

algorithm. When performing the allocation, CHARM maxi-

mizes the economical throughput of BE jobs while alleviating

QoS violation of Q due to resource contention (Section V-B).

The challenging part is to minimize the time needed to identify

the optimal allocation to adapt to dynamic loads.

(3) The accelerator-side QoS compensator monitors the

progress of Q in the CPU stage. If the queries of Q run slower

than expected, the compensator speeds up Q’s GPU stage by

allocating it more computational resources (Section V-C). The

hardpoints here are quickly identifying the new computational

resource quota for Q on GPU without seriously degrading the

throughput of BE applications on GPU.

It is worth noting that CHARM does not need offline

profiling for LC services on GPU, while prior work like Laius

requires excessive profiling.

V. DESIGN AND IMPLEMENTATION

This section introduces the technical details of CHARM,

including a BE-aware QoS target allocator, a heterogeneous

resource manager and an accelerator-side QoS compensator.

A. BE-aware QoS target allocator

We first propose a BE-aware QoS target allocator, which

allocates the QoS target for CPU stage and GPU stage of

the LC task according to the characteristics of BE tasks on

heterogeneous devices. The difficulty lies in how to solve the

QoS division within limited samplings accurately .

In our preliminary evaluation, increasing resource quotas of

BE tasks can effectively improve the BE task’s performance.

However, different BE tasks have different sensitivity to shared

resources (cores, LLC, memory bandwidth in CPU and SMs in

GPU). To maximize the utilization of computation resources,

the shared resource usage of LC tasks should have as little

impact as possible on the BE tasks’ performance.

Hence, we design a heuristics searching algorithm to per-

form QoS division for the LC service as shown in Figure 7(a).

Specifically, we initially set each resource ((cores, LLC,

memory bandwidth in CPU and SMs in GPU)) quota of the

LC task to their minimum resource unit, while allocating the

rest resources to the BE task. To ensure the QoS of the LC

task, shared resource quotas allocated to LC task should be

increased. Each time, we adjust the QoS allocation to CPU-

GPU stage according to the performance surface of shared

resources. We respectively record the increase in QoS of

the LC task ΔQoSd and BE task performance degradation

Δperfd in the searching step. We use Equation 1 to select the

best resource allocation d∗, then adjust the resources d∗ from

the BE task to the LC task and perform the next loop.

d
∗
= argmaxd∈core,LLC,BW,SM

|ΔQoSd|
|Δperfd|

(1)

Finally, we get the near-optimal results that not only sat-

isfy QoS but also try to ensure the minimum performance

degradation of BE tasks. The final time of CPU stage and

GPU stage are scaled up to the QoS target and used as

the QoS division. The QoS division is passed to the unified

heterogeneous resource manager as the initial sample. This

step significantly impacts the number of samples searching

for the best resource allocation later.
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Fig. 6: Design overview of CHARM.
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QoS target division

Fig. 7: (a) BE-aware QoS target allocator; (b) SMAC-based

resource manager

B. SMAC-based unified heterogeneous resource manager

Once the QoS allocator obtains the QoS target division,

CHARM needs to manage the resources for the co-location

service on each device to improve the overall resource utiliza-

tion while ensuring the QoS of the LC service. Given the large

resource allocation space in heterogeneous co-locations, it is

essential for our resource manager to quickly identify the best

resource partition with the minimum sampling times.

CHARM uses Sequential Model-Based Optimization for

General Algorithm Configuration (SMAC) to perform the

resource partition as shown in Figure 7(b). However, two

problems make it inappropriate to use the SMAC algorithm di-

rectly for co-located services. First of all, the SMAC algorithm

selects random initial sampling points. While the approach

work for simpler services, they are prone to covariant shift in

heterogeneous situation, which causes frequent QoS violations

in the process of sampling. Secondly, the traditional objective

function in SMAC optimization returns a single value (e.g., the

throughput of the system or execution time) to be maximized.

CHARM cannot apply traditional SMAC since CHARM needs

to satisfy multiple criteria (QoS of LC jobs and maximize

performance of BE jobs).

To this end, we have made two adaptive corrections to

the SMAC algorithm. For initial sampling points, CHARM

carefully select them based on different strategies: (1) the

even-priority strategy (all CPU tasks get equal computation

resources); (2) the resource partitions achieved from the Sec-

tion V-A; (3) the QoS guaranteed strategy (minimum resource

quota for BE job while the remaining resources for LC job).

In general, the above three configurations can better discover

potential resource partitions and speed up the sampling pro-

cess. As to deciding which configurations to evaluate next,

we carefully design the objective function so that SMAC

optimization can be applied to heterogeneous co-location.

Score =

⎧⎪⎪⎨
⎪⎪⎩

1
2 × QoS

target
CPU

QoSeval
CPU

× QoS
target
GPU

QoSeval
GPU

, If QoS not meet

1
2 + α × PerfCPUr

PerfCPUs
+ β × PerfGPUr

PerfGPUs
, Otherwise

(2)

We design a score function for CHARM that assigns

scores to the objection function (i.e., the objective score is

assigned at the end of the period when the system is run

under the given resource partition configuration). This score

function guides CHARM to search in the right direction in the

large configuration space. We construct a segmented objective

function which considers both the QoS of the LC job and

economical throughput of BE jobs. The function value is

shown in equation 2, which is between 0 (worst case scenario,

no LC job meets its QoS) to 1 (ideal scenario, all LC jobs

meet QoS and BE jobs achieve the same performance as if

they run in isolation). The first objective is to meet the QoS

target on both CPU and GPU. QoStarget is the QoS of LC job,

QoSeval is the latency of the LC job under current resource

configuration. The score will attain a value less than 0.5 if all

LC jobs suffer from QoS violations on any device regardless

of the performance of BE jobs. Only when the score is more

than 0.5, the second objective function is considered.

The second objective in equation 2 is to maximize the over-

all system throughput of BE jobs, where perfr is the through-

put of BE jobs during sampling, perfs is the throughput of

solo-run BE jobs. Considering the price for renting CPUs and

GPUs varies greatly, we perform a weighted summation of

throughput on both CPU and GPU, where α = 0.05 and β = 6
are correlated with the rental prices of CPU and GPU.

Object = MAX(a(Score(R)))

Constraint-1: 0 ≤ rij ≤ Rj 0<i ≤ n, 0<j ≤ m

Constraint-2:
∑n

i=1
rij ≤ Rj 0<j ≤ m

(3)

To speed up the search process of SMAC optimization,

CHARM uses a pruning strategy based on optimization prob-

lem shown in Equation 3 to constrain the search space, which

can remove most ”undesirable” resource allocations. Suppose

that n tasks need to be deployed with m kind of resources. We
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formulate the searching processing as shown in equation 3.

Let R is a matrix with n rows and m columns, where rij
represents the share of the j-th resource owned by the i-

th task. Rj represents the total amount of resource j. The

optimization problem contains two kinds of constraints. First,

for each task, the maximum quota of each task does not exceed

the total amount of the resource. Secondly, for each resource,

the sum of the quota of all tasks cannot be larger than the

total amount. Meanwhile, in order to find the global optimal

resources partition, we calculate the final score of the resources

partition using the acquisition function [17].

Algorithm 1: SMAC-based resources manager
Input: Initialize configuration samples set

Dk = ((x1, Score(x1),· · · ,(xk, Score(xk))), Maximum
interations N , Perfermance target(Pt)

1 Run the system with the inital configuration Dk .
2 for i in k to N do
3 Score ← Fitmodel(Di)
4 Caculate the acquisition function a(Score(Di)).
5 x∗ = argmaxx∈Di

a(Score(Di))
6 Score(x∗) ← eval(x∗)
7 Di+1 ← (Di, (x

∗, Score(x∗)))
8 if Pt is met then
9 break

10 Return the best resources configuration x∗

In summary, CHARM schedules the resources of the CPU-

GPU colocation services according to Algorithm 1. CHARM

creates an initial sampling configuration set and performs a

looped sample. CHARM makes the following steps in each

sample: 1) Construct a random forest model(Fitmodel) based

on the sampling configurations set to predict the performance

contention of LC and BE tasks (line 3). 2) Compute the target

optimization to solve the next optimal sampling configuration

x∗ in the target space (line 4-5). 3) Use the resource partitions

corresponding to x∗ to evaluate the contention services and

return the performance score (line 6). 4) Add the resource

partitions and the corresponding performance score into the

sampling configuration set for the next loop (line 7).

C. Accelerator-side QoS compensator

During the execution of a LC query Q, the accelerator-

side QoS compensator monitors the progress of Q in the

CPU stage. If Q run slower than expected (i.e. sudden spikes

in workloads or other contention which cannot be explicitly

managed), the compensator speeds up Q’s GPU stage by

allocating it more computational resources. The hard points

in this step are quickly identifying the new computational

resource quotas for Q on GPU without seriously degrading

the throughput of BE applications on GPU.

The compensator periodically checks whether it runs slower

than expected in the CPU stage. Let Tcpu and T
′
gpu represent

the actual CPU duration of Q with the current resource quotas

and the GPU duration of Q with new identified computational

resource quotas on GPU, respectively. Tsave = Tcpu −
QoStarget

CPU calculates the increased duration of executing the

CPU stage. If Tsave is larger than the reduced GPU duration

TABLE II: Hardware and software specifications.

Specification

Hardware Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
GeForce RTX 2080Ti

Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
NVIDIA DGX-2 with 16 Tesla V100s-SXM3

Software Ubuntu 16.04.5 LTS with kernel 4.15.0-43-generic
PyTorch 1.8.1 CUDA SDK 10.0 CUDNN 7.4.2

of Q with the new resource quota, which means Equation 4

is satisfied, Q is able to meet the QoS target.

Tcpu −QoStarget
CPU ≥ (QoStarget

GPU − T
′
gpu) (4)

Based on Equation 4, the compensator is able to identify

the new “just-enough” computational resource quota on GPU-

side for Q. In the equation, T
′
gpu can be achieved from the

performance model, QoStarget
CPU and QoStarget

GPU are from the

Section V-A, Tcpu is measured at runtime directly. Once the

new quota is identified, the computational resource quotas

allocated to BE jobs are also updated simultaneously. If the

CPU progress of Q satisfies QoS with the new quota, the

resource quota allocated to Q rolls back to its original quota.

In this way, CHARM ensures Q completes before the QoS

target, and minimizes the resource used by it. In this work,

we rely on the process pool technique proposed in Laius [30]

to enable the resource reallocation on GPUs.

VI. EVALUATION

A. Experiment Setup

In our experiments, we choose four representative LC

services with both CPU stage and GPU stage from NLP and

CV scenarios to Gaming in Table III, three BE jobs on CPU

from Parsec [3] and four BE jobs on GPU from Rodinia [4],

in which we categorize the first type as compute-intensive

workloads (HS) and the second type as memory-intensive

workloads (B+tree, MD, BFS). To represent a production

environment, we provide an open-loop asynchronous workload

generator to simulate users’ requests. The arrival time of user

requests follows an exponential distribution.

The experiments are carried out on a 28-core server

equipped with one Nvidia GPU RTX 2080Ti. The detailed

setups are summarized in Table II. Note that CHARM does

not rely on any special hardware features of 2080Ti and is

easy to be set up on other spatial multitasking accelerators.

Throughout our experiments, the QoS target is defined as

the 99%-ile latency. The overall QoS target for the DNN-

assisted LC job is 150ms which is widely accepted by users,

while the QoS of Gaming is 60 FPS(frame per second). The

throughput is represented by IPS (instructions per second).

Besides, the cost-oriented throughput of BE jobs is calculated

as α∗perfcpu+β ∗perfgpu, which explained in Section V-B.

We use taskset interface in OS and Nvidia Volta Multi-Process

Service (MPS) to enable the resource allocation. Besides, we

use the process pool proposed in Laius [30] to enable the

resource reallocation.
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Fig. 8: The 99%-ile latency of LC job normalized to the QoS target with CHARM and CHARM-NC.

TABLE III: The DNN models used as the LC services.

Neural model Scenario Dataset
VGG-16 [27] Style transfer COCO& WikiArt
ResNet-50 [15] CV ImageNet
Wav2letter [9] Speech Recognition LibriSpeech
DenseNet-201 [16] CV ImageNet
BERT [11] NLP GLUE
LSTM [14] Translation Real and Fake News
DOOM [1] Open-sourced Game &

B. Ensuring the QoS with CHARM

We evaluate the effectiveness of CHARM in ensuring the

QoS target of LC services. Figure 8 presents the 99%-ile

latency of LC services normalized to their QoS target when

they are co-located with BE jobs on CPU and GPU. There are

overall 4×3×4 = 48 co-location pairs (4 LC jobs, 3 BE jobs

on CPU and 4 BE jobs on GPU). Observed from this figure,

CHARM ensures the QoS of LC jobs. On the contrary, the

original allocation and Clite+Laius allocation in Figure 2 as

mentioned in Section 3 results in QoS violation of LC jobs.

CHARM monitors the progress LC queries at CPU-side and

allocates more GPU resources to a slow query to compensate

for the delay. To evaluate this design choice, we also verify the

effectiveness of the collaborative accelerator-side compensator.

We disable the collaborative compensation part of CHARM

and test the system. Figure 8 also presents the 99%-ile

latency of LC services at co-location in CHARM without

the compensator as CHARM-NC, a system that disables the

accelerator-side compensator.

Figure 8 also shows the existence of QoS violation in

CHARM without the compensator as CHARM-NC. Observed

from Figure 8, LC services in 33 out of the 48 co-locations

suffer from QoS violation in CHARM-NC. For instance, vgg
suffers from up to 1.5X QoS violation when it is colocated

with BS+MD. The QoS violation is due to the cost of

optimization algorithm and the fluctuation of sampling points

during load changes. It implies that the compensator is able to

efficiently reduce the QoS violation due to the configuration

search at CPU side.

We further compare CHARM with Clite+Laius, a straight-

forward resource management solution using the method in

Clite on CPU co-colocation for the host stage and the method
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Fig. 9: The snapshot of resource allocation for a particular mix

of co-located jobs (Left). The resource allocation over time of

a particular load setting where Clite+Laius does not meet the

QoS while CHARM does (Right).

in Laius on accelerator co-colocation for the accelerator stage.

Adopting Clite+Laius, the end-to-end QoS target of an LC

service is first divided into the QoS for the host stage, and the

QoS for the accelerator stage. After that, the resources on the

host and accelerator are managed independently to fulfill the

host QoS target and the accelerator QoS target. And then we

choose the static optimal pair as the baseline solution.

The left subfigure in Figure 9 provides the snapshot of

the resource allocation for a particular mix of co-located jobs

(resnet with BS and MD as the BG jobs). For this mix, both

CHARM and Clite attain the QoS targets for the LC job as

shown in Figure 8 and Figure 2, but the resource allocations

are different for all jobs.

The right subfigure in Figure 9 shows the resource allocation

over time of a particular load setting where Clite+Laius does

not meet the QoS, while CHARM does. The co-location

corresponds to the co-location of resnet, blackscholes and NW.

These results provide a deeper view into why Clite+Laius

approach cannot meet QoS targets even after 50 configuration

samples, while CHARM meets the QoS for the LC job in less

than 26 configuration samples and stabilizes. This is because

the Gaussian processing-based Bayesian optimization needs

much more tries than the SMAC method used in CHARM

to find the appropriate resource allocation. LC queries suffer
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Fig. 10: The cost-oriented throughput of BE jobs at co-location with CHARM and Clite+Laius.

(a) Cost-oriented throughput at differ-
ent level

(b) Percentage of QoS violation

Fig. 11: The scale-out results on DGX2 servers.

from QoS violation during the search with Clite+Laius. The

potential QoS violation during the search with CHARM is

eliminated by the accelerator-side compensator.

C. Cost-oriented throughput

In this subsection, we evaluate the effectiveness of CHARM

in maximizing the cost-oriented throughput. Figure 10 shows

the cost-oriented throughput of BE applications at co-location

with CHARM and Clite+Laius. Observed from this figure, BE

applications in the 3 × 3 × 8 = 72 co-locations (including

Resnet50, Vgg16 and Bert) achieve higher throughput with

CHARM than Clite+Laius. Specifically, CHARM improves

the cost-oriented throughput of BE applications by 43.2% on

average compared with Clite+Laius.

CHARM’s evaluation demonstrates its effectiveness, robust-

ness, and practical feasibility across a range of scenarios and

workloads. CHARM’s LC job performance is better than the

previously proposed solutions such as Clite and Laius, and BE

jobs’ throughput is more than 40% in many cases. CHARM

can co-locate a set of resource-hungry and the latency-critical

job while meeting their QoS targets, and can still provide

high performance to BE jobs, in comparison the competing

techniques (including Clite and genetic algorithm approach).

D. Scale-out Study

To further evaluate the effectiveness of CHARM in GPU

datacenters, we evaluate CHARM with four DGX2 servers

which equipped with V100 GPUs (Table II). We evenly

use one GPU server for each type of LC services (Resnet,

vgg, Bert, DOOM) with 3 BE jobs on CPU (Parsec) and

8 BE jobs on GPU (Rodinia) in Table I. As shown in

Figure 11, CHARM achieves higher cost-oriented throughput

and lower QoS violation compared with Even Allocation(EA)
policy and Clite+Laius. On average, CHARM improves the

throughput by 39.2% compared with Clite+Laius. As shown

in Figure 11(b), 40.6% of LC jobs suffer from severe QoS

violations(20% degradation) with EA while 24.7% of LC jobs

exceed QoS (more than 2% degradation) with Clite+Laius. On

the contrary, CHARM can maintain the QoS target, and less

than 2.3% of LC jobs suffer from insignificant QoS violations

(less than 2% degradation).

E. Overhead of CHARM

As described in Section 5, CHARM dynamically allocates

computation resources to LC and BE tasks based on the current

system resource usage at runtime. Among them, the sampling

process of running the SMAC algorithm once consumes less

than 10ms. In addition, the compensator needs to reallocate

GPU computation resources according to the runtime condi-

tions of the CPU side, and it takes less than 0.1ms for to

perform a search. In general, the overall overhead introduced

by CHARM does not exceed 7% of the LC job’s QoS.

VII. CONCLUSION

We propose CHARM, a collaborative host-accelerator re-

source management runtime system that considers the interfer-

ence of both the host and the accelerator side comprehensively.

CHARM uses the QoS target allocator to assign the QoS

target of the host side and accelerator side respectively, and

uses improved SMAC to allocate appropriate resources (cores,

SMs, Cache, Memory bandwidth, etc) for the LC job and

BE job. In addition, CHARM also uses a compensator to

dynamically adjust the resources allocated to the LC jobs.

The experimental results show that CHARM improves the

utilization by 43.2% without incurring QoS violations.
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