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Abstract—Datacenters use GPUs to provide the significant computing throughput required by emerging user-facing services. The
diurnal user access pattern of user-facing services provides a strong incentive to co-located applications for better GPU utilization, and
prior work has focused on enabling co-location on multicore processors and traditional non-preemptive GPUs. However, current GPUs
are evolving towards spatial multitasking and introduce a new set of challenges to eliminate QoS violations. To address this open
problem, we explore the underlying causes of QoS violation on spatial multitasking GPUs. In response to these causes, we propose C-
Laius, a runtime system that carefully allocates the computation resource to co-located applications for maximizing the throughput of

batch applications while guaranteeing the required QoS of user-facing services. C-Laius not only allows co-locating one user-facing
application with multiple batch applications, but also supports the co-location of multiple user-facing applications with batch
applications. In the case of a single co-located user-facing application, our evaluation on an Nvidia RTX 2080Ti GPU shows that C-
Laius improves the utilization of spatial multitasking GPUs by 20.8 percent, while achieving the 99%-ile latency target for user-facing
services. As to the case of multiple co-located user-facing applications, C-Laius ensures no violation of QoS while improving the

accelerator utilization by 35.9 percent on average.

Index Terms—Spatial multitasking GPUs, QoS, improved utilization

1 INTRODUCTION

ATACENTERS often host user-facing applications (e.g.,

web search [1], web service [1], memcached) that have
stringent latency requirements. It is crucial to guarantee
that the queries’ end-to-end latencies are shorter than a
predefined Quality-of-Service (QoS) target, which is gener-
ally from 100 ms to 300 ms. With the quick advance of
machine learning technology, emerging user-facing appli-
cations, such as Apple Siri [2] and Google Translate [3],
start to use machine learning technologies (e.g., Deep Neu-
ral Network) that are often computational demanding.
Datacenters have adopted accelerators to run these services
so that they can achieve the required latency target [4]. As
prior work states, user-facing applications experience diur-
nal user access patterns (leaving the accelerator resources
underutilized for most of the time except peak hours) [5],
[6]. The diurnal pattern provides a strong incentive to co-
locate user-facing services with batch applications that do
not have QoS requirements to improve utilization when
the query load is low.

Accelerator manufacturers are now producing spatial
multitasking GPUs for higher aggregated throughput for
co-location applications [7], [8], [9]. For instance, the latest
Nvidia Volta and Turing architectures allow kernels to
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share certain portions of computational resources simulta-
neously. Leveraging the new generation Multi-Process Ser-
vice (MPS) [10], it is possible to allocate a small percentage
of computational resources (active threads) to global mem-
ory bandwidth-bound applications and use most computa-
tional resources to speed up the execution of the co-located
compute-intensive applications.

Improving utilization while guaranteeing QoS of user-
facing services at low load has been resolved for both CPU
servers and traditional GPU-outfitted servers [11], [12], [13],
[14], [15]. For CPU co-location, prior works fall into two sce-
narios: 1. The co-location is limited to at most one user-fac-
ing service per physical host, co-scheduled with one or
more batch jobs; 2. The co-location supports multiple user-
facing jobs with batch jobs on the same physical node.

For the first co-location situation, prior works include
two categories: profiling-based and feedback-based. The
profiling-based method, such as Bubble-Up [11], profiles
user-facing services and batch applications offline to pre-
dict their performance degradation at co-location due to
shared cache and memory bandwidth contention, and
identifies the “safe” co-locations that do not result in
QoS violation. The feedback-based method, such as Her-
acles [13], builds models to determine shared resource
allocation in the next time period according to the QoS
feedback of user-facing services in the current period.
These studies assume that all the user-facing queries
have similar workloads and each query is processed by
a single thread [11], [12], [13], [16], [17]. For the second
co-location situation, PARTIES [18], a recent work, is the
only work that aims to co-locate multiple user-facing
jobs with batch jobs. PARTIES leverages a set of hard-
ware and software resource partitioning mechanisms to
adjust allocations dynamically at runtime.
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On CPUs, applications contend for the cores, shared
cache, and the main memory bandwidth. On the other
hand, our investigation shows that the latency of a query on
a spatial multitasking GPU is impacted by the percentage of
computational resources allocated to its kernels, the scalability of
the kernels, and the contention on shared resources (e.g.SMs,
global memory bandwidth, and PCle bandwidth.) There-
fore, prior work is not applicable for spatial multitasking
GPUs, because the latency of a user-facing query at co-loca-
tion on this hardware is impacted by different factors.

For application co-location on traditional GPUs, where
kernels from the co-located applications queued up for
processing elements, queuing-based methods (e.g., Bay-
max [14]) are proposed to eliminate QoS violation due to
the long queuing time. Baymax predicts every GPU task’s
duration, reserves time slots for each user-facing query, and
uses the remaining slots to process batch applications. On
the contrary, on spatial multitasking GPUs, kernels share
processing elements spatially. The queuing-based method
does not apply for spatial multitasking GPUs. Meanwhile,
these works also have been limited to co-locating at most
one user-facing job with one or more background jobs on
traditional GPUs.

It is challenging to determine the number of computa-
tional resources allocated to each task of a user-facing
query so that its QoS can be satisfied while maximizing
resource utilization on spatial multitasking GPUs. Since
how kernels overlap with each other is only known at run-
time, an online methodology is required to eliminate QoS
violation caused by contention on shared resources. To this
end, we propose C-Laius, a runtime system that is com-
prised of a fask performance predictor, a contention-aware
resource allocator, and a progress-aware lag compensator.
When a user-facing query is submitted, for each of its tasks
k, the task performance predictor predicts k’'s duration and
global memory bandwidth usage under various computa-
tional resources. Based on the prediction, the resource allo-
cator assigns the query “just-enough” resource to satisfy its
QoS. When C-Laius assigns the remaining resources to
batch applications, contention-aware resource allocator
limits the global memory bandwidth usage of the batch
kernels to eliminate QoS violation due to global memory
bandwidth contention. Suppose the query runs slower
than expected due to the contention on other shared
resources. In that case, the progress-aware lag compensator
allocates more resources to the unexecuted kernels of the
query to enforce its QoS. C-Laius that we proposed above
is suitable for the fixed and conservative situations where
the effort has been limited to co-locating at most one user-
facing application with batch applications on spatial multi-
tasking GPUs. In this way, we have expanded the applica-
ble scenarios of C-Laius to multiple QoS services (services
with QoS requirements)and proposed a new, priority-
based resource allocation strategy. When multiple user-fac-
ing queries are submitted, the multiple QoS tasks sched-
uler identifies their tasks” priority based on prediction and
progress monitor. Then C-Laius adjusts the resources
quota to each task according to their resource sensitivity.
In this work, we rely on the bandwidth reservation tech-
nique proposed in Baymax [14] to ensure the data trans-
mission at full speed for each user-facing query, thus

eliminating QoS violation which is resulted from PCle
bandwidth contention.
The main contributions of this paper are as follows.

e  Comprehensive analysis of QoS interference on spatial
multitasking GPUs - We identify key factors that
impact the end-to-end latency of a user-facing query.
The analysis motivates us to design a resource man-
agement methodology for ensuring QoS while maxi-
mizing utilization.

e  Enabling dynamic resource reallocation for spatial multi-
tasking GPUs - We propose the process pool to adjust
resource allocation between co-located applications
at runtime, while the native MPS does not support
resource reallocation during the execution of an
application.

e Designing an online progress monitor for identifying
potential QoS violation - If a query runs slower than
expected so that it cannot meet the QoS target, C-
Laius allocates it with more computational resources
to compensate for the lag.

o New techniques to determine resource allocation among
multiple QoS tasks - C-Laius takes a flexible resource
allocation strategy based on priority to explore mul-
tiple resource dimensions and tasks simultaneously
to (1) effectively co-locate multiple user-facing and
background applications, and (2) extract hidden
opportunities for improving efficiency by exploiting
differences among tasks toward resource sensitivity.

Our experiment on an Nvidia RTX 2080Ti GPU shows that

C-Laius can improve the throughput of batch applications by
20.8 percent compared with state-of-the-art solution Bay-
max [14], while guaranteeing the 99%-ile latency of user-facing
services. As to the case of multiple co-located QoS applications,
C-Laius ensures no violation of QoS while improving the
accelerator utilization by 35.9 percent on average.

2 RELATED WORK

There has been a large amount of prior work aiming to
improve resource utilization while guaranteeing QoS of
user-facing applications for CPU co-location [11], [12], [16],
[19]. Bubble-Up [11] and Bubble-Flux [12] identify “safe”
co-locations that bound performance degradation while
improving chip multiprocessor utilization. PARTIES [18]
proposes a simple solution towards meeting the latency tar-
gets of multiple co-located user-facing services. It tries to
incrementally increase or decrease one resource (e.g., num-
ber of cores, memory capacity, etc.) for one QoS task at a
time, and assesses the observed performance. However,
they are not applicable for spatial multitasking GPUs
because the latency of a user-facing query at co-location on
spatial multitasking GPUs is impacted by different factors.
For co-location on accelerators, Multi-Process Service
scheduling [10] enables multiple applications to share one
GPU concurrently. GPU Maestro [9] aims at increasing GPU
utilization on GPGPU-Sim rather than real in-production
GPUs. TimeGraph [20] and GPUSync [21] use priority-
based scheduling to guarantee the performance of real-time
kernels. High priority kernels are executed first if multiple
kernels are launched to the same GPU. GPU-EvR [22]
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Fig. 1. Comparison of the original MPS and Volta MPS.

launches different applications to different streaming multi-
processors (SMs) on one GPU. Baymax [14] predicts the ker-
nel duration and reorders the kernel based on the QoS
headroom of user-facing queries. However, they assume
that the accelerator is time-sharing and non-preemptive. The
time-sharing assumption results in low resource utilization
compared with C-Laius. KSM [23] predicts the slowdown of
co-located applications on spatial multitasking GPUs. How-
ever, it relies on a broad spectrum of performance event sta-
tistics that are not available on real system GPUs. And KSM
cannot identify the “just-enough” computational resource
quotas for user-facing queries as C-Laius does.

3 BACKGROUND AND MOTIVATION

3.1 Spatial Multitasking GPUs

A GPU often has multiple Streaming Multiprocessors that
share the global memory. For instance, Nvidia RTX 2080Ti,
a GPU of Turing architecture, has 68 SMs that can run 1,024
active threads (i.e., computational resources) concurrently.
The SMs share a 12 GB global memory.

Since a single kernel may not be able to utilize all the SMs
and other on-chip resources all the time [14], [24], [25], [26].
Starting from Kepler architecture [27], Nvidia proposed
Multi-Process Service technique [10] to enable concurrent
execution of kernels from different processes on the same
GPU. If a kernel cannot occupy all the SMs, kernels from the
co-located applications will use the remaining SMs. Com-
pared with the traditional solution that executes kernels
sequentially, MPS improves resource utilization, overall
GPU throughput and energy efficiency [10], [14].

The traditional MPS technique does not provide an inter-
face to control how different kernels’ thread blocks (TBs)
are dispatched into SMs. Only when a kernel cannot use all
computational resources, the remaining threads are allo-
cated to run other kernels. In this case, as shown in Fig. 1a,
kernels are still executed sequentially with little concurrent
execution. In this scenario, the on-chip shared memory and
L1 cache are still underutilized in most cases.

To improve GPU utilization, Volta and Turing architec-
tures introduce Volta MPS with new capabilities that allow

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 4, APRIL 2022

multiple applications to share GPU resources simulta-
neously [10]. As shown in Fig. 1b, the new Volta MPS tech-
nique enables explicit GPU computational resource
allocation, where the spatial multitasking is possible.

3.2 Investigation Setup

We use Nvidia RTX 2080Ti as the experimental platform to
perform the investigation. Because our study does not rely
on any specific feature of 2080Tj, it applies to other spatial
multitasking GPUs. In this experiment, we co-locate user-
facing services with batch applications and schedule them
with existing GPU resource management techniques. We
use applications in a DNN service benchmark suite, Tonic
suite [28], as user-facing services, and use benchmarks in
Rodinia [29] as batch applications. More details of the experi-
mental hardware and benchmarks are described in Section 9.

3.3 Problem of QoS Violation

Fig. 2 shows the QoS violation of user-facing services at co-
location adopting the new Volta MPS technique [30]. Adopt-
ing Volta MPS, when n applications are co-located, we allo-
cate computational resources with two policies: even
allocation and priority allocation. With even allocation, each
application is configured to use 200%/n of the computa-
tional resources following the recommendation of Nvi-
dia [30]. With priority allocation, the user-facing service is
allocated 100 percent of the computational resources for
QoS requirement while each of the rest n — 1 applications is
allocated 100%/(n — 1) of the computational resources.

In Fig. 2, the z-axis shows the co-location pairs while the
y-axis presents the 99%-ile latency of the user-facing service
normalized to the QoS target. For example, dig +BFS
presents the normalized 99%-ile latency of the user-facing
service dig when co-located with the batch application BFS.
As shown in the figure, different batch applications cause
varying amounts of performance degradation to the co-
located user-facing services. User-facing services in 28 and
13 out of 48 co-locations pairs suffer from QoS violation
with even allocation and priority allocation respectively.
The serious QoS violation is mainly due to the limited
computational resources allocated to user-facing queries
and the shared resource contention. Even if 100 percent of
computational resources are allocated to a user-facing ser-
vice with priority allocation, its tasks may still run concur-
rently with kernels of batch applications when its tasks do
not have enough warps (Warp is the basic execution unit of
SM). In this case, the concurrent data accessed from global
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Fig. 2. QoS violation of user-facing applications with Volta MPS that adopts even allocation and priority allocation.
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Fig. 3. Execution trace of user-facing service face and batch applications
BFS on a spatial multitasking GPU.

memory and shared memory degrades user-facing queries’
performance, which results in QoS violation.

3.4 Factors That Affect the End-to-End Latency

To understand the QoS violation problem at co-location,
Fig. 3 presents a real system execution trace of a user-facing
service face and four batch applications bfs on a spatial mul-
titasking GPU. We can see that the tasks from different
applications run concurrently. Analyzing from Fig. 3, there
are three key factors affecting the end-to-end latency of a
user-facing query (g) at co-location.

(1) The Computational Resource Percentage Allocated to g. If
the percentage is too small, there are not enough active
threads to process its tasks, resulting in its long latency. On
the contrary, if too many computational resources are allo-
cated to g, batch applications would suffer from the low
throughput.

(2) The Scalability of Every Task in q. A user-facing query
often has multiple tasks. The task’s scalability determines if
it can speed up when more computational resources are
allocated to the task. Allocating a large percentage of
computational resources to a non-scalable task would not
reduce the latency of g.

(3) The Contention on Shared Resources. Because tasks
from different applications may run on the same SM [30],
concurrent tasks may contend for both shared memory
within the SM and global memory bandwidth. The conten-
tion may seriously degrade the performance of co-located
applications.

3.5 Challenges for Resource Allocation on Spatial
Multitasking GPUs

Our real system investigation has shown that three factors
affect the latency of user-facing queries at co-location. How-
ever, identifying the appropriate percentage of computa-
tional resources allocated to a user-facing query is non-
trivial due to the complex interference behaviors on spatial
multitasking GPUs. Specifically, there are several key chal-
lenges to maximize the throughput of batch applications
while guaranteeing the QoS of user-facing services.

(1) The Workload of User-Facing Queries Varies - Since users
often submit queries with different workloads, the compu-
tational resource percentage needed to complete a query
within the QoS target varies. There is no optimally static
resource percentage for a user-facing service.

(2) The Performance Degradation Varies Due to the Shared
Resource Contention - The performance degradation of a
user-facing query depends on how the tasks overlap with
each other during runtime. Because tasks have different
pressures on the shared resources, a user-facing query may
suffer from different performance degradations even if it is
co-located with the same batch applications.

€37 Naive [XJ Enhanced

<
|

cooooo0000R

Fig. 4. The throughput of user-facing services normalized with naive and
enhanced.

(3) An Approach is Required to Enable Resource Reallocation
at Runtime - The percentage of computational resources
allocated to an application is not configurable during its
lifetime in emerging spatial multitasking GPUs. However,
a user-facing query may suffer from QoS violation with
the current computational resources due to shared resource
contention. Therefore, an approach is required to allocate a
larger percentage of computational resources to a query
during its execution.

3.6 Co-Locating Multiple User-Facing and Batch
Applications Together

For the scenario of multiple user-facing applications, we

combine 6 different user-facing applications from Tonic

Suite in pairs to form 15 sets of multi-QoS combinations.

And we choose one fixed non-QoS application from Rodinia

as the batch application.

We first perform a set of baseline experiments without
scheduling. As a result, QoS violations existed in all 15
groups in the experiment. In this way, we identify a set of
solutions based on static optimization through offline profil-
ing. The static optimization here refers to enumerating all
possible percentage situations, and running the program
with different percentage configuration situations. Then we
identify the least number of QoS violations for all percent-
age configurations. It can be seen from the Fig. 21 that the
optimal set of solutions can guarantee that there are no QoS
violations in 7 of the 15 groups. Comparing the GPU
throughput of the static optimal solution to the baseline, we
can see from the Fig. 4 that the throughput has declined a
little in the static optimal case since the percentage of batch
applications becomes zero.

4 C-LAlus METHODOLOGY

In this section, we present C-Laius, which maximizes the
throughput of batch applications while guaranteeing the
QoS of user-facing services on spatial multitasking GPUs.

4.1 Design Principle of C-Laius
To address the challenges discussed in Section 3.5, we
design and implement C-Laius based on three principles.

e C-Laius should be able to predict the smallest per-
centage of computational resources needed by a
user-facing query to return before the QoS target
according to its input data and the scalabilities of its
tasks.

e C-Laius should be able to allocate the free computa-
tional resources to batch applications for maximizing
their throughput while minimizing the performance
interference to user-facing queries.

e C-Laius should be able to boost the processing of
user-facing queries if they cannot complete before
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Fig. 5. Design overview of C-Laius.

the QoS target due to the interference from the co-
located batch applications.

4.2 C-Laius Overview

Fig. 5 demonstrates the design overview of C-Laius, a run-
time system consisting of a task performance predictor, a con-
tention-aware resource allocator and a progress-aware lag
compensator. The performance predictor can precisely pre-
dict the performance of a task' with different resource quo-
tas. The resource allocator maximizes the throughput of
batch applications while minimizing the possibility of QoS
violation of user-facing queries due to global memory band-
width contention. Moreover, the lag compensator monitors
the progress of user-facing queries and speeds up their exe-
cution if they run slower than expected.

As shown in Fig. 5, C-Laius treats tasks of user-facing
queries (referred to “QoS tasks”) and tasks of batch applica-
tions (referred to “non-QoS tasks”) differently. Once a QoS
task is submitted, it starts to run directly with “just-enough”
resources. And when a non-QoS task is submitted, it is first
pushed into a ready task pool. C-Laius selects appropriate
non-QoS tasks from the ready task pool and executes them
only when there are free computational resources.

In more detail, when a user-facing query ¢ is received by
GPU, C-Laius processes it in the following steps.

(1) C-Laius predicts the duration of ¢ with different
computational resource quotas, identifies “just-enough”
quotas so that ¢ can return within the QoS target based on
pre-trained duration models. All its tasks run with the same
computational resource quota by default (Section 5).

(2) The contention-aware resource allocator allocates the
remaining computational resources to execute non-QoS
tasks. When performing the allocation, C-Laius aims to
maximize the throughput of batch applications while allevi-
ating QoS violation of ¢ due to the contention on global
memory bandwidth and shared memory (Section 6). As it is
possible that multiple batch applications are co-located with
a user-facing service and tasks have divergent characteris-
tics, it is challenging to identify the appropriate allocation.

(3) C-Laius monitors the progress of ¢. If ¢ runs too slow
to meet the QoS, the lag compensator speeds up its

1. A kernel or a library call is referred to a task.

execution by allocating more computational resources to ¢’s
to-be-executed kernels (Section 7). The difficulties in this
step are identifying the new computational resource quota
for ¢'s to-be-executed kernels and performing the adjust-
ment because existing accelerators (e.g., Nvidia Volta and
Turing GPUs) do not provide an interface to adjust the
computational resource allocation during the execution of g.

We propose the process pool to enable runtime computa-
tional resource reallocation. Specifically, we launch a pool
of daemon processes that are configured to run with various
accelerator resource percentages (they are idle in most
cases). If C-Laius decides to adjust the resource configura-
tion for ¢ during its execution, ¢’s to-be-executed tasks are
“hacked” and sent to a daemon process that is configured to
run with the corresponding resource configuration. The
daemon process then submits these tasks to the accelerator
on behalf of ¢, achieving online resource reallocation.

5 TASK PERFORMANCE PREDICTION

We train a query duration model for each user-facing ser-
vice and a performance model for each task. A performance
model predicts a task’s duration, global memory bandwidth
consumption and instructions per cycle (IPC). In a long-run-
ning datacenter, it is acceptable to profile a service and build
it a model before running it permanently. The profiling is
done offline and no runtime overhead is involved.

5.1 Predicting Query Duration

The query duration model is used to identify the “just-
enough” computational resources for a user-facing query.
We use input data size and percentage of computational resour-
ces as the features to train the query duration model. The
input data size reflects the workload of a query, and the per-
centage of computational resource reflects the computa-
tional ability used to process the query.

To build such a duration model for a user-facing service,
we submit queries with different inputs to the service, exe-
cute them with different computational resource quotas and
collect the corresponding duration. During the profiling,
queries are executed in solo-run mode to avoid performance
interference due to shared resource contention. For a user-
facing service, we collect 100 x 10 = 1000 samples with
100 different inputs, and 10 different percentages of
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TABLE 1
Parameters Used in the Performance Modeling

Task type Parameters Dimension

Hand-written kernel Input data size 1
Grid size (X*Y*Z) 3

Block size (X*Y*Z) 3
Shared memory size 1

Pct. of computational resource 1

Library call all parameters

Pct. of computational resource 1

computational resources (increasing from 10 to 100 percent
with step 10 percent). We randomly select 80 percent of the
samples to train the model and use the rest to evaluate the
accuracy of the trained model (Section 5.3).

5.2 Predicting Task Performance

The contention on shared resources, such as global memory
bandwidth and shared memory, may result in the QoS vio-
lation of query ¢ when it is allocated ”just-enough” compu-
tational resources. To eliminate the QoS violation and
maximize the throughput of batch applications, C-Laius
needs to understand the duration, global memory band-
width and IPC of each task. In this way, when C-Laius
assigns the remaining computational resources to non-QoS
tasks, it can prioritize the task with higher IPC and lower
global memory bandwidth usage (Section 6). By comparing
the predicted duration of each task with its actual process-
ing time, the lag compensator can detect potential QoS vio-
lation and identify the new resource allocation for ¢ to
complete before the QoS target (Section 7).

For a task ¢, we use instruction-per-cycle to represent its
throughput on an accelerator. Let /NS and 7' represent the
number of instructions and the processing time of ¢, respec-
tively. Equation (1) calculates the IPC of ¢ (denoted by
IPC)). In the equation, Freq is the running frequency of the
accelerator. Note that, /NS and T can be obtained with
Night Compute (Nvidia profiling tool) directly, Freq can be
found from the design document.

INS
1 =\
PGy T x Freq

1)

In user-facing services and batch applications, there are
generally two types of computational tasks: the hand-writ-
ten kernel and the library call. Hand-written kernels are
written by programmers, while library calls invoke highly
optimized common libraries (e.g.,, cuDNN [31] and
cuBLAS [32] on GPUs).
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Fig. 6. The errors for predicting query duration.

60 60
252.14 300.25
— _
S S
o 40 T4
2 2
= g
-
5 220
S 20 £
B o
0 all B o B
2 98 3 B3 NETE ES QD O®
0 2 g R
T 53 % 5 8 TEH®55255z2¢2¢85°¢
2 2 3 2 2 & 852828592 E =552
& £ &% E § S 3R oL s £ F T L
S 0O » = & ¢ o T 5 € B 5T L5 2L
< = 2 8 % ;5 25 E€ L B Tz z 8
5 8 8 3 @ 2 & 223 & ¢
s O ~ £ 2
< Z

(a) Library call (b) Hand-written kernel

Fig. 7. Errors of predicting the task duration.

It is challenging to predict the computational tasks’ per-
formance owing to the limited information that can be
obtained before they are executed. For the two types of
tasks, as shown in Table 1, different characters are used to
train their performance models. For a hand-written kernel,
the parameters we can obtain before it is executed include
its configuration (grid size, block size, shared memory size),
input data size and compute resource quota. For a library
call, because the actual implementation and kernel configu-
rations are hidden behind the API, we need to treat all the
kernels in a library call as a whole.

5.3 Determining Low Overhead Models

The QoS target of a user-facing query is hundreds of milli-
seconds to support smooth user interaction [33]. Choosing
modeling techniques with low computation complexity and
high prediction accuracy is crucial. We evaluated a spec-
trum of broadly used regression models for the task perfor-
mance prediction: k-nearest neighbors (KNN) [34], Linear
regression (LR) [35] and Decision Tree (DT) [36]. Besides,
some lightweight neural networks are also suitable for per-
formance prediction, such as the Lightweight Augmented
Neural Networks (NN+C) proposed in [37].

To construct the training and testing datasets for our pre-
diction model, we have collected a large number of samples
while randomly choosing 80 percent of them to train the
model and using the rest for testing. The prediction error is
measured by Equation (2).

B | Predicted value — Measured value|
rror =

(2)

Measured value

Fig. 6 shows the errors of predicting query duration and
data transfer duration on the test set with KNN, LR, and DT.
As observed from this figure, DT and KNN are accurate for
query duration prediction, with the prediction error lower
than 5 percent. Figs. 7 and 8 present the errors of predicting
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Fig. 8. Errors of predicting the global memory bandwidth usage of tasks.
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the duration and global memory bandwidth usage of each
task with KNN, LR, and DT. We can find that LR has poor
accuracy for prediction, while KNN and DT are accurate for
predicting durations and global memory bandwidth usages
of both library calls and hand-written kernels. Besides the
accuracy, we measure the time of performing a prediction
using KNN, LR, and DT. The time of performing a prediction
using KNN is longer than 2 milliseconds, while the time of
prediction using DT is 0.47 millisecond.

We also evaluate the prediction model NN+C with our
training data. Fig. 9 presents the prediction errors of the
duration, global memory bandwidth usage, and IPC of ker-
nels/APIs used in C-Laius with DT and NN+C. In general,
DT shows higher accuracy for predicting the kernel/API
performance than NN+C. Because DT shows higher accu-
racy with little prediction overhead than other methods
according to our measurement, we use DT as the modeling
technique to train the performance model.

6 CONTENTION-AWARE RESOURCE ALLOCATION

In this section, we present the contention-aware resource
allocator that allocates computational resources to co-
located applications. The allocator aims to maximize the
throughput of co-located batch applications while avoiding
performance interference to user-facing queries due to seri-
ous global memory bandwidth contention.

Fig. 10 presents the processing flow of the contention-
aware resource allocator. As shown in the figure, the
resource allocator allocates enough computational resources
to QoS tasks directly (Section 6.1). The resource allocator
then divides remaining computational resources to non-
QoS tasks by modeling the allocation problem as a knapsack
problem (Section 6.2).

6.1 Allocating Resource for User-Facing Queries
When a user-facing query ¢ is received, C-Laius obtains its
input data size and estimates its duration with various
computational resource quotas using the duration model
trained in Section 5.1.

The end-to-end latency of ¢ is composed of data transfer
time, and task processing time. For query g, let Tiy, Tpeie,
and 7, represent its QoS target, its data transfer time
through PCle bus, and its actual processing time. 7),.;. can
be collected when ¢ transfers its data to the accelerator.
Only when Equation (3) is satisfied, ¢ returns before its QoS
target. In Equation (3), T}, T}ic are already known when C-
Laius allocates computational resources for g.

Tp < 71tgz‘ - Tpcie- (3)

By comparing Ti; — Tpeie With the predicted duration of ¢
using various resource quotas, C-Laius identifies the “just-
enough” computational resources for query g¢. The
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Fig. 10. Contention-aware resource allocation in C-Laius.

contention-aware resource allocator then allocates “just-
enough” computational resource to ¢. By default, all QoS
tasks in ¢ run with the same computational resource quota.

6.2 Allocating Resources for Non-QoS Tasks

The remaining computational resources are then allocated
to batch applications. Considering a single batch application
may not fully utilize computational resources, multiple
batch applications can be co-located with a user-facing ser-
vice. It is non-trivial to allocate resources to non-QoS tasks,
because non-QoS tasks may contend for shared resources
with query g, resulting in the QoS violation of q.

When C-Laius allocates remaining computational resour-
ces to non-QoS tasks, it aims to achieve the best throughput
for non-QoS tasks without incurring serious global memory
bandwidth contention with QoS tasks. As mentioned in Sec-
tion 4, the overall throughput of non-QoS tasks is translated
to a quantitative IPC goal, which means quotas allocated to
non-QoS tasks can be derived from an optimization prob-
lem related to its feasible solutions. In more detail, this
problem can be formalized to be a single-objective optimiza-
tion problem [38], where the objective function is maximiz-
ing the sum of non-QoS tasks’ IPCs and the constraint is
global memory bandwidth.

There are two constraints to this optimization problem.
First of all, the accumulated global memory bandwidth
usage of co-running tasks should be smaller than the avail-
able global memory bandwidth of the accelerator to avoid
serious bandwidth contention. Second, the computational
resource quota allocated to concurrent tasks should not
exceed overall available computational resources. Suppose
there are n non-QoS tasks waiting in the ready task pool.
Let BW, R and z(,s represent the available global memory
bandwidth, overall computational resources and the
computational resources allocated to the QoS task in query
q respectively. Equation 4 expresses the object and the con-
straints in the optimization problem. In the equation, z; is
the computational resource quota allocated to the ith non-
QoS task, f(z;) and g(z;) are the predicted IPC and the pre-
dicted global memory bandwidth usage of the ith non-QoS
task when it is allocated z; computational resource quota
respectively.

Object: MAXIMIZE y=Y f(z:),0<z <R
Constraint-1: Z;l g(zi) + g(xgos) < BW
Constraint-2: Z:L:l 2 + Tgos < R. 4)
Many algorithms can be applied to solve the optimiza-

tion problem. However, it is time-consuming to resolve a
continuous optimization problem. To reduce the scheduling
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overhead, we discretize computational resources allocated
to different tasks and transform the continuous optimiza-
tion problem into a discrete optimization problem, thus sig-
nificantly reducing the computational complexity to
identify the appropriate computational resource allocation.
The assumption we made for discretizing computational
resources is that: the GPU has computational resources of N
quotas, and each quota has 1% computational resources. If
a task is allocated k£ quotas of computational resources,
108xk% of computational resources allocates to this task.

The discrete optimization problem can be further mod-
eled to be a complete knapsack problem. Let Ny, represent
the quota of computational resources that are not used by
QoS tasks. Suppose there are m non-QoS tasks in the ready
task pool. The above discrete optimization problem is the
same to find the solution that can maximize the value of
items in a backpack of capacity Nj.., while keeping the
weight of the items smaller than N,... In the knapsack prob-
lem, there are m items corresponding to the m non-QoS
tasks. An item’s weight is the computational resource quota
of a non-QoS task, and the value of the item is its IPC with
the given computational resource quota. As shown in Equa-
tion (5), the complete knapsack problem can be further
modeled with 0/1 knapsack. In the equation, Vi][j] is the
maximum value of the items when the capacity of the back-
pack is j and the number of items is ¢ in the backpack. m is
the weight of the ith item, and IPC; ,, is the achieved IPC of
the ith non-QoS task when it is allocated m resource quotas.
We adopt the dynamic programming technique to resolve
this complete knapsack problem.

Vi) = maz(V]i — 1][j — m] + IPC;,,);m € [1,...,]]. )

It is worth noting that a non-QoS task may get no
resource according to the above solution. In this case, the
non-QoS task stays in the ready task pool and waits to be
launched to GPU when other tasks release some computa-
tional resource quotas. Moreover, if the identified resource
allocation does not obey the two constraints in Equation (4),
the resource allocator invalidates the allocation and
searches for another allocation that follows both constraints.

6.3 Enabling Resource Reallocation

The resource allocator needs to update the resource quota
allocated to each batch application during its execution.
However, emerging Volta MPS does not provide an inter-
face to update the resource quota allocated to a process dur-
ing its lifetime.

Time line

Fig. 12. Identifying a new computational resource quota for a user-facing
query to compensate the processing lag.

To solve this problem, we propose the process pool in
Fig. 11. As shown in the figure, C-Laius launches a pool of
processes that are configured to use different computational
resource quotas. For a process p (executing a user-facing
query or a batch application), C-Laius intercepts all the
tasks of p. If the computational resource quota of its tasks is
updated, the unexecuted tasks of p are forwarded to run on
the process with the expected resource quota. Otherwise, its
tasks are executed in p directly.

We intercept an accelerator task through function hook-
ing technique. C-Laius hooks function “cudaLaunchKernel”
and APIs in common libraries (e.g., cuDNN), and overrides
their function pointers using LD_PRELOAD environment
variable. The new implementations of cudaLaunchKernel
and the APIs parse and forward the kernel/API pointer, the
device (GPU) pointer and parameters to a remote process in
the process pool for invocation. Meanwhile, the memory of
the executable tasks is also mapped into the remote proc-
ess’s address space, so that the remote process can execute
the task using the received kernel/API pointer.

7 PROGRESS-AWARE LAG COMPENSATION

The contention-aware resource allocator eliminates the QoS
violation of user-facing queries due to global memory band-
width contention by limiting the global memory bandwidth
usage of non-QoS tasks. Besides the contention on global
memory bandwidth, concurrent tasks also contend for
shared memory and L1 cache so that the contention cannot
be explicitly managed. The contention may result in the
slow progress of user-facing queries. To this end, we pro-
pose a progress-aware lag compensator to monitor the prog-
ress of user-facing queries and mitigates the possible QoS
violation by adjusting the compute resource quota allocated
to each QoS task inspired by the queuing theory [39].

During the execution of a user-facing query ¢, the com-
pensator periodically checks whether it runs slower than
expected due to resource contention. Suppose there are n
QoS tasks in query ¢ in total and %k of them have com-
pleted. Let t,...,t; represent the predicted duration, and
..., reEresent the actual duration of the k& completed
tasks. If >°7 (¢ —t;) is larger than 0, query ¢ runs slower
than expected and may suffer from QoS violation. In this
scenario, the lag compensator identifies a new computa-
tional resource quota for ¢ so that it can return before the
QoS target.

Fig. 12 shows the way to identify a new computational
resource quota for query q. Let 1,00 and T, represent the
predicted durations of ¢ with the current computational
resource quota and the newly identified computational
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Fig. 13. The latency characteristics of different QoS applications as
resource quota changes.

resource quota, respectively. If Equation (6) is satisfied,
query ¢ can return before the QoS target. In the equation ¢
represents the predicted duration of the ith completed task
with the new resource quota. Observed from the equation,
Tow — Thew is the overall reduced duration of query ¢ with
the new resource quota. Ty = Zle(ti —t}) is the reduced
duration of executing the & already completed tasks. There-
fore, Tow — Thew — Tsave 18 the reduced duration of the n — k
unexecuted tasks in query ¢. If the reduced duration of the
n — k unexecuted tasks is larger than the lag of the com-
pleted tasks S°F (¢ —t;), query g is able to return before
the QoS task.

Tnow - Tncw - Zle (tt - ti) Z Zle (t,r - tL) (6)

Based on Equation (6), the lag compensator is able to
identify the new “just-enough” computational resource
quota for query g. In the equation, 7},,, and T,,.,, can be pre-
dicted with the query duration model, ¢; and ¢, can be pre-
dicted with the task performance model, ¢ is measured at
runtime directly. Once the new quota is identified, C-Laius
adopts the process pool proposed in Section 6.3 to run the
unexecuted tasks of query ¢ with the new resource quota.
Meanwhile, the computational resource quotas allocated to
non-QoS tasks are also updated simultaneously.

If the progress of ¢ does not lag behind the expected
progress any more with the new quota, the resource quota
allocated to ¢ rolls back to its original quota. In this way, C-
Laius makes that ¢ completes before the QoS target, and
minimizes the resource used by it.

8 MuLTIPLE QOS APPLICATIONS: DESIGN AND
IMPLEMENTATION

In this section, we present new techniques to determine
resource allocation among multiple QoS tasks and non-QoS
tasks. C-Laius takes a flexible resource allocation strategy
based on priority to explore multiple resource dimensions
simultaneously to (1) effectively co-locate multiple user-fac-
ing and batch applications, (2) extract hidden opportunities
for improving efficiency by exploiting resource sensitivities
of tasks. Fig. 14 presents the processing flow of the priority-
based resource allocation scheduler.

First, C-Laius needs to determine the initial resources
percentage for multiple QoS tasks. The initial determination
is particularly important in the scenario of multiple QoS
tasks, because both tasks are latency critical. The unscien-
tific initial allocation will directly lead to the final QoS
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violation. C-Laius uses a method similar to the initial
resource allocating strategy for user-facing queries pro-
posed in Section 6.1.

According to the function expression of each QoS task’s
overall time obtained by prediction and their QoS targets,
we determine the percentage of computing resources
required for each QoS task ¢1, ¢2. If the sum of the ¢1,¢2 is
less than or equal to 100 percent, ¢1 and ¢2 are directly taken
as the initial resource percentages of the two QoS tasks
respectively. And if the sum of the two is greater than 100
percent, C-Laius will determine which QoS target of two
user-facing applications is satisfied first according to the
slope of the point where ¢1 and ¢2 are located. In detail, the
slopes of ¢1 and g2 refer to the tangent slopes of the corre-
sponding coordinate points when running at this percent-
age in the function of the total execution time of the QoS
task obtained from prediction. If the tangent slope of the ¢1
point is greater than which of ¢2, it means that the impact of
reducing the resource percentage of the QoS task 1 on its
latency is greater than that of the QoS task 2, so the priority
of the QoS task 1 is higher. And in this way, C-Laius needs
to meet the resource quota requirement of the QoS task 1
preferentially. The percentage of the QoS task 2 is obtained
from 100 — ¢1.

After describing the initial percentage allocation of two
QoS applications that have QoS requirements, the second
step needs to consider the dynamic change of the resource
allocation during the application execution process. Based on
the previous discussion in Section 3, we have proven that
pure static optimization cannot fully meet the application’s
QoS. Due to the process pooling technology we proposed in
Section 6.3, we have implemented a resource quota schedul-
ing mechanism at the API and kernel levels. Based on this,
we propose the priority-based resource allocation strategy.

During the execution of two QoS tasks, the task progress
needs to be monitored in real-time. Once in a while, two
QoS tasks need to be synchronized to observe the progress
of tasks. Each synchronization operation is updated with a
priority. Simultaneously, the scheduler determines the
resource percentage of the next kernel/API according to the
scheduling rule and task priority, and then launches a new
percentage process through the enhanced process pool.

The specific priority and scheduling rules are as follows:
The first step needs to determine the real-time priority of the
two QoS tasks. After a fixed interval, the time spent on com-
pleted tasks(APIs/kernels in QoS tasks) obtained by synchro-
nization is ¢ finisnes. The QoS target is t¢,s, and the maximum
remaining time is ¢,. as shown in Equation (7) . And if all the
subsequent tasks are completed according to the percentage
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TABLE 2
Summary of Different Shared Resources
on a Spatial Multitasking GPU

Shared resource Allocation method

the number of SMs Volta MPS
global memory capacity capacity limiting
global memory bandwidth bandwidth limiting

of resources used by the currently hooked process, based on
the prediction function, the estimated time is t,.cqi. The
online compensation time is 7. If 7" is equal to 0, there is no
need to modify the current percentage, and the priority of the
QoS task is set to 2. Otherwise, the priority of the QoS task is
pending. If T" is less than 0, the scheduler can appropriately
reduce the resource percentage, and the priority of the QoS
task is set to 3. The compensation time required for the two
tasks are T'1, T2. If 1 > T2, the priority of the QoS task 1 is
1, the QoS task 2 is 2, and vice versa.

Lrest = thS - tfinishcd T = predict — Lrest- (7)

Once the priority has been determined, the second step is
to determine the detailed resource quotas. Fig. 13 shows the
execution time characteristics of some common user-facing
applications with the percentage of resources varies. Con-
sidering different scalabilities of every task, the latency does
not always change linearly as resource percentage increases.
For example, increasing the computing resource quota by 10
percent of the QoS task 1 will save 10ms while increasing
the computing resource quota by 20 percent of the QoS task
2 will save only 11ms. Therefore, the optimal saving strat-
egy should be included in C-Laius to increase or decrease
resource quotas as needed.

Assume that the resource quota of the QoS task1 process
being executed is x. To compensate for 7', the optionally
increased resource quotas are a and b, respectively. And the
corresponding shortened latency of each task ¢ in the QoS
taskl are x; and y; ms.

Aq n n
A:Xb7Aa':a/Zizlxi’Ab:b/Zizlyiv (8)

where n is the number of remaining tasks (kernels/APIs) in
the user-facing application. TH represents the threshold,
which we set as 0.9. As shown in Equation (8), A, and A4,
represent the ratio of the increased resources and the total
shortened time of the QoS query. Once the ratio A is less
than TH the resource quota is a, otherwise b.

During runtime, the scheduler monitors the QoS tasks’
priorities from different QoS queries. When the priority is 1,
the resource quota required by it is satisfied preferentially.

TABLE 3
Benchmarks Used in the Experiment

Workloads
face, dig, imc, ner, pos, chk

BFS, B+tree, PF (pathfinder), NW
HS (hotspot), MD (lavaMD)
MY (myocyte), LUD

Benchmark Suite
Tonic suite [28]
Rodinia [29]

TABLE 4
Hardware and Software Specifications

Specification

Intel(R) Xeon(R) CPU E5-2620 v3@ 2.4GHz
GeForce RTX 2080Ti

Hardware

Ubuntu 16.04.5 LTS
CUDA Driver 410.78 CUDA SDK 10.0
CUDNN 7.4.2

Software

When the priority is 2, the task will still execute at the cur-
rent percentage while guaranteeing the QoS of the higher
priority. When the priority is 3, the required resources are
reduced. If there are remaining resources, batch applica-
tions consume them to improve utilization.

In addition to the online resource scheduling of the two
QoS applications, C-Laius also considers how to maximize
the throughput of batch applications while ensuring QoS
requirements of user-facing applications. Similar to Sec-
tion 6.2, this problem can also be transformed into a single
objective optimization implementation. As shown in
Table 2, there are three common resource contentions on
the spatial multitasking GPU. These three dimensions
must be considered as constraints in the optimization prob-
lem to avoid the impact of resource contention on QoS
tasks, rather than simply allocating the remaining idle
resources to batch applications.

There is no doubt that C-Laius’s fine-grained scheduling
method can allow different kernels of the same task to get
the appropriate percentage of resources to utilize GPU
resources better. We have modified the original process
pool so that it can support two different co-location situa-
tions (one or more user-facing applications).

9 EVALUATION OF C-LAIUS

9.1 Experimental Setup

We use benchmarks in Tonic suite [28] as user-facing serv-
ices and use benchmarks in Rodinia benchmark suite [29]
as batch applications. Table 3 gives a brief description of
the benchmarks. In our experiments, we use 6 user-facing
services from Tonic suite as user-facing services and 8 rep-
resentative batch applications from Rodinia, in which we
categorize the first type as computation-intensive works
(HS, LUD, MY) due to the possibility of high cache conten-
tion and the second type as memory-intensive workloads
(BFS, B+ tree, NW, PF, MD) due to the heavy memory
traffic.

The experiments are carried out on a machine equipped
with one Nvidia GPU RTX 2080Ti. The detailed setups are
summarized in Table 4. As to the runtime configuration,
there are 40 processes(4 processes to one quota) in the pro-
cess pool. Note that C-Laius does not rely on any special
hardware features of 2080Ti and is easy to be set up on other
GPUs with Volta or Turing architecture. From the Turing
architecture Whitepaper, we can see that the maximum
global memory bandwidth provided by 2080Ti is 616 GB/s.

Throughout our experiments, the QoS target is defined
as the 99%-ile latency, and the utilization of the accelerator
is calculated as the ratio of the throughput of batch
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Fig. 15. The normalized throughput of batch applications at co-location with Baymax and C-Laius.

applications normalized to their throughput when they run
alone on the experimental platform. As to the resource
adjustment granularity, we do the sensitivity analysis using
different granularities (3, 5,10 and 20 percent). The normal-
ized throughput of batch applications remains the same as
granularity increases (<10%). While the granularity is set to
20 percent, the throughput significantly decreases. So We
choose 10 percent resource percentage as the adjustment
granularity.

9.2 QoS and Throughput

In this section, we evaluate the effectiveness of C-Laius in
maximizing the accelerator throughput while ensuring the
QoOS of requirement emerging user-facing tasks. We compare
C-Laius with Baymax [14]. Baymax predicts the duration of
every task and reserves enough GPU time slices for user-fac-
ing queries. If the duration of a non-QoS task is shorter than
the QoS headrooms of user-facing queries, the non-QoS task
is issued. Otherwise, the non-QoS task is blocked. In our
experiment, we configure each of the co-located applications
to use 100 percent of computational resources for Baymax, to
set up an environment that it works.

Fig. 16 presents the 99%-ile latency of user-facing serv-
ices normalized to their QoS target when they are co-located
with batch applications. There are overall 6 x 8 =48 co-
location pairs (6 user-facing services and 8 batch applica-
tions). Observed from the figure, both C-Laius and Baymax
ensure the QoS of user-facing services. On the contrary, the
even allocation and priority allocation in Fig. 2 result in QoS
violation of user-facing services.

Fig. 15 shows the normalized throughput of batch appli-
cations at co-location with Baymax and C-Laius. Observed
from the figure, batch applications in all the 6 x 8 = 48 co-
locations achieve higher throughput with C-Laius than Bay-
max. Specifically, C-Laius achieves the normalized 70.3 per-
cent utilization of batch applications, while Baymax
achieves 49.5 percent utilization on average. In general, C-

‘\/XV)VJ\"F\N/v Rt Aiea AN

—¥— Baymax
Laius

Normalized 99%-ile latency

0 10 20 30 40

Fig. 16. The 99%-ile latency of user-facing services normalized to their
QoS targets in the 48 co-locations.
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Laius improves the throughput of batch applications by
20.8 percent at co-location compared with Baymax.

C-Laius allocates computational resources to run differ-
ent tasks simultaneously while Baymax runs tasks sequen-
tially. C-Laius can squeeze more computational resources to
execute batch applications. Space sharing often conveys bet-
ter resource utilization than time sharing when a single task
cannot fully utilize all the resources [7].

As an example, Fig. 17 shows the change of resource
quota during the execution of a user-facing query imc, when
it is co-located with batch applications BFS. Observed from
the figure, when a query ¢ of imc is received, the perfor-
mance predictor finds that 40 percent of the computational
resource is “just-enough” for it. During the execution of ¢,
the lag compensator finds that the query runs slower than
expected. In this case, the compensator calculates it as a
new resource quota 60 percent, and processes the remaining
tasks of the query using the new quota. Later, the progress
of ¢ does not lag behind as expected, and the quota rolls
back to the original 40 percent. In this way, C-Laius ensures
that the query face completes before the QoS target, and
minimizing the resource used by query q.

9.3 Effectiveness of Constraining the Global
Memory Bandwidth Contention

C-Laius predicts the global memory bandwidth require-
ments of all tasks and makes sure that the overall global
memory bandwidth usage of the concurrent tasks is
smaller than the peak available global memory bandwidth
in the accelerator. To evaluate the effectiveness of this con-
straint in eliminating QoS violation due to global memory
bandwidth contention, we compare C-Laius with C-Laius-
NB, a system that disables the global memory bandwidth
constraints when allocating computational resources to
non-QoS tasks.

Fig. 18 presents the 99%-ile latency of user-facing serv-
ices at co-location in C-Laius-NB. As observed from the
figure, user-facing services in 25 out of the 48 co-locations
suffer from QoS violation in C-Laius-NB. For instance, dig
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Fig. 17. The change of resource quota allocated to a user-facing query
imc when it is co-located with BFS.
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Fig. 18. The 99%-ile latency of user-facing services normalized to the QoS target with C-Laius-NB and C-Laius-NC.

suffers from up to 2X QoS violation when it is colocated
with MY. Since the only difference between C-Laius and C-
Laius-NB is whether to disable global memory bandwidth
constraints when scheduling. So the QoS violation is due to
the unmanaged global memory bandwidth contention.
When the non-QoS tasks in MY co-runs with QoS tasks in
dig, even if dig should be able to complete before the QoS
target when it runs alone, the global memory bandwidth
contention results in serious performance degradation of
the QoS tasks. Although the lag compensator can allocate
more resources to the unexecuted tasks of dig, it is possible
that the lag is too long to be compensated. By constraining
the global memory bandwidth contention, the lag tends to
be short, thus it can be easily compensated if necessary.

For some co-location pairs, the QoS of user-facing serv-
ices is satisfied using C-Laius-NB. This is because the co-
located applications in these pairs do not contend for global
memory bandwidth seriously. In this case, with the precise
performance predictor and lag compensator, C-Laius-NB is
enough to ensure the QoS of user-facing services if the co-
located applications are not global memory bandwidth
intensive applications.

9.4 Effectiveness of the Lag Compensator
In this section, we verify the need for the compensation mecha-
nism. We remove the compensation part of C-Laius and test
the system. Fig. 18 shows the existence of QoS violation in C-
Laius without the compensator. It implies that in addition to
the contention of bandwidth and computing resources, there is
other resource contention, such as shared memory contention.

C-Laius monitors the progress of user-facing queries at
co-location and allocates more resources to a slow query to
compensate for the processing lag. To evaluate this design
choice, Fig. 18 also presents the 99%-ile latency of user-fac-
ing services at co-location in C-Laius-NC, a system that dis-
ables the lag compensator in C-Laius.

Observed from Fig. 18, user-facing services in 18 out of the
48 co-locations suffer from QoS violation in C-Laius-NC. For
instance, dig suffers from up to 2X QoS violation when it is
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Fig. 19. The normalized overall throughput at co-location with C-Laius
and baseline.

colocated with BFS. The QoS violation is due to contention on
other unmanaged shared resources. As we mentioned before,
besides global memory bandwidth, tasks of different applica-
tions may run in the same SMs, thus share the shared memory
and L1 cache in the SM. In this scenario, even if the perfor-
mance interference from global memory bandwidth is elimi-
nated, the contention on shared memory and L1 cache may
also result in the performance degradation of co-located QoS
tasks. Without the lag compensator, the degradation results in
the QoS violation of user-facing services.

9.5 Effectiveness of the Priority-Based Resource
Allocation Among Multiple QoS Tasks

We also evaluate the effectiveness of C-Laius in maximizing
the GPU throughput while ensuring the QoS targets of emerg-
ing user-facing applications in multiple QoS situations. And
we verify the need for the priority-based scheduling mecha-
nism. We compare C-Laius with the static optimal policies
rather than Baymax. In our previous experiments, we proved
that Baymax is very unsuitable for scenarios with multiple
QoS tasks, leading to strong QoS violation.

In the experiment, we used 6 benchmarks in the tonic
suite and combined them to generate 15 different co-location
pairs. As shown in Fig. 21, in the static optimal scenario, 8
out of 15 groups of experiments experienced QoS violations.
After our priority-based scheduling, all QoS tasks pairs in 15
groups of experiments can meet their QoS requirements as
shown in Fig. 20. As for the GPU utilization, Fig. 19 shows
the normalizied throughput at co-location with the static opti-
mal baseline and C-Laius. And the last column in the figure
shows the average results. Compared with the result of the
static optimal baseline, C-Laius has increased the normalized
throughput at co-location by 35.9 percent on average. Specifi-
cally, C-Laius can significantly improve the utilization rate of
the accelerator in the scenario of multiple QoS tasks, and at
the same time ensure the QoS goals of multiple tasks. To con-
clude, the priority-based scheduling mechanism is capable of
eliminating QoS violation due to the potential contention on

shared resources.
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Fig. 22. The scale-out results with Prior,Baymax, and C-Laius.

9.6 Overhead of C-Laius

The main overhead of two cases in C-Laius is from the process
pool in contention-aware resource allocation. And the over-
head of the process pool originates from three sources: First, to
maintain the consistency of data across the origin process and
the processes in the process pool, synchronization is essential.
We reduce the times of synchronization through accurately
scheduling by 80.8 percent, other than switching between pro-
cesses with different quota frequently. Second, we adopt the
CUDA IPC and other techniques to share GPU resources
between processes, which consume 3.2 ms in execution. But,
these additional operations can be overlapped(e.g., execution
for sharing same GPU device pointer only needs to be exe-
cuted once, the first time hooked). Finally, communications
among origin process, scheduler and process pool also have a
significant effect on overhead, which finished in 4.8 ms on
average. Overall, the overhead of switching the execution
resource quota of the task through the process pool we
designed is less than 4 percent in one query.

9.7 Large-Scale Cloud Study

In this section, we conduct experiments to evaluate the
effectiveness of C-Laius in a GPU-outfitted datacenter sce-
nario. Therefore, we model a datacenter composed of 600
Nvidia RTX 2080Ti GPUs in the same way as Prophet [15],
100 GPUs for each type of user-facing applications in Tonic
suite shown in Table 3. The batch workloads are evenly
selected from Rodinia shown in Table 3. In the experiment,
we use pair-wise co-locations, and randomly select three
batch applications to colocate with each user-facing applica-
tion. As shown in Fig. 22a, the models achieve higher GPU
utilization and lower QoS violation with C-Laius compared
with priority-based allocation policy and Baymax in large-
scale datacenters. On average, C-Laius improves the nor-
malized utilization by 35.2 percent compared with Baymax.
As shown in Fig. 22b, 30.6 percent of user-facing applica-
tions suffer from severe QoS violations(>30 percent degra-
dation) with Priority Allocation. On the contrary, C-Laius
and Baymax can maintain the QoS of user-facing applica-
tions, and less than 4.8 percent of user-facing applications

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 4, APRIL 2022

suffer from insignificant QoS violations (less than 2 percent
degradation) with C-Laius which is better than 24.3 percent
with Baymax.

10 CONCLUSION

C-Laius improves the hardware utilization in spatial multi-
tasking GPUs while guaranteeing the QoS requirement of
user-facing applications. To achieve this purpose, C-Laius
enables precise task duration prediction, contention-aware
resource allocation, and progress-aware lag compensator.
Through evaluating C-Laius with emerging user-facing serv-
ices, we demonstrate the effectiveness of C-Laius in eliminat-
ing QoS violation due to insufficient computational resources,
global memory bandwidth contention, and contentions on
other unmanaged shared resources. C-Laius improves the
throughput of batch applications at co-location by 20.8 percent
on average compared with state-of-the-art techniques, with-
out violating the QoS of 99%-ile latency for user-facing serv-
ices. As to the case of multiple user-facing applications, C-
Laius ensures no violation of QoS while improving the overall
throughput by 35.9 percent on average.
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