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Online Video Super-Resolution with Convolutional
Kernel Bypass Grafts
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Abstract—Deep learning-based models have achieved remark-
able performance in video super-resolution (VSR) in recent years,
but most of these models are less applicable to online video
applications. These methods solely consider the distortion quality
and ignore crucial requirements for online applications, e.g., low
latency and low model complexity. In this paper, we focus on
online video transmission in which VSR algorithms are required
to generate high-resolution video sequences frame by frame in
real time. To address such challenges, we propose an extremely
low-latency VSR algorithm based on a novel kernel knowledge
transfer method, named the convolutional kernel bypass graft
(CKBG). First, we design a lightweight network structure that
does not require future frames as inputs and saves extra time
for caching these frames. Then, our proposed CKBG method
enhances this lightweight base model by bypassing the original
network with “kernel grafts”, which are extra convolutional
kernels containing the prior knowledge of the external pretrained
image SR models. During the testing phase, we further accelerate
the grafted multibranch network by converting it into a simple
single-path structure. The experimental results show that our
proposed method can process online video sequences up to
110 FPS with very low model complexity and competitive SR
performance.

Index Terms—Video Super-resolution, deep lightweight model,
video restoration

I. INTRODUCTION

V IDEO super-resolution (VSR) is a fundamental task in
computer vision that aims to generate high-resolution

(HR) video sequences given the corresponding low-resolution
(LR) counterparts. In general, VSR is a challenging problem
because of its ill-posed nature, which means that an LR frame
can be generated from an infinite number of possible HR
frames. With the rapid development of video applications in
the last decade, VSR has demonstrated substantial industrial
value and thus attracted researchers’ attention.

Online video applications (e.g., cloud gaming, live broad-
casting, and online video conferences) have become increas-
ingly popular, especially during COVID-19. Although existing
deep learning-based models have achieved unprecedented suc-
cess in VSR tasks, most of them are less applicable in online
situations because developers solely pursue performance im-
provement and are seldomly concerned with latency and model
complexity [1]–[3]. Therefore, super-resolving online video
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Fig. 1. Average PSNR, FPS and FLOPs (G) of different methods evaluated
on the REDS4 dataset. All methods are deployed in a Tesla V-100 GPU,
and the size of each input image is 180× 320. The dotted lines indicate the
recommended FPS of different online applications, e.g., for “ Gaming ”, the
recommended FPS for cloud games is 60 FPS. “ BasicVSR∗ ” is the modified
version of BasicVSR and meets online VSR requirements.

sequences is still a challenging and important problem. In this
paper, we focus on the online VSR setting, where users need
to receive super-resolved video sequences frame-by-frame in
real time.

In contrast to offline VSR, where there is no restriction
on model complexity and latency, online VSR poses two key
challenges to existing VSR methods. The first challenge is that
online applications have extremely strict requirements in terms
of low latency and buffering lag because they involve real-time
user interaction. In some online applications (e.g., online video
conferences), slight latency will significantly affect the user’s
experience and the conference quality, which is undesirable.
However, most state-of-the-art VSR methods need to cache
future frames to super-resolve the current frame, which will
unavoidably introduce large latency. For example, TOF [4]
and RLSP [5] use optical flows to align future frames and
propagate the information contained in those future frames to
the current frame for feature aggregation. Second, to reduce
the transmission bandwidth, online VSR methods are usually
deployed on client devices rather than cloud servers, which
require the models to have low model complexity and real-time
speed. However, the majority of deep VSR models adopt com-
plicated network modules with high computational complexity
in exchange for better performance, such as progressive fusion
blocks [6]–[8] and nonlocal attention blocks [9], [10]. The
client devices (e.g., personal computers, mobile phones, etc.)
are usually resource-constrained and cannot support models
with such high computational complexity. It should be noted
that the distortion quality of VSR methods is highly related to
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their model complexity. Reducing the model complexity will
inevitably deteriorate the distortion quality of the generated
images. Therefore, it is essential to achieve a good trade-
off among the distortion quality of the generated videos, the
processing latency, and the model complexity for online VSR
algorithms.

In this paper, we propose a low-latency online VSR solution
based on a novel knowledge transfer-based method called
the convolutional kernel bypass graft (CKBG). To maximize
the performance with no cached future frames and limited
model capacity/latency, we propose leveraging the prior in-
formation from large pretrained image SR models. Borrowing
the concept of a heart bypass graft, CKBG enhances a VSR
base model by bypassing the original network with “kernel
grafts”, which are extra convolutional kernels containing the
prior knowledge of external pretrained image SR models.
Specifically, given the number of kernels extracted from large
pretrained image SR models, CKBG learns a set of kernel
bases with the K-means algorithm in the Wasserstein space,
and the “kernel grafts” are obtained by learning a linear rep-
resentation under the space spanned by the learned bases. The
grafted multibranch structure of our network can be converted
into a single-path structure with kernel reparameterization
[11], [12], which can effectively reduce the model complexity
and latency.

The main contributions of this paper are as follows:
• In this paper, we mainly focus on online video super-

resolution, where no future frames are accessible, and
propose an extremely low-latency and effective online
VSR method.

• To further improve the performance, we propose the
CKBG scheme, which incorporates the prior information
learned from large pretrained image SR models into a
VSR base model.

• The experimental results show that our proposed method
can process video sequences with up to 110 FPS and
achieve promising performance compared with other
state-of-the-art VSR methods, as summarized in Fig. 1.

II. RELATED WORKS

A. Deep Lightweight Image SR Methods

In recent years, increasing efforts have been invested into
exploring deep lightweight models for image SR because most
promising deep SR methods [13], [14] require high computa-
tional complexity, which significantly limits their applications
in resource-constrained devices. The common methods [15]–
[18] for reducing model parameters adopt recurrent structures,
which share the parameters and enhance the features with mul-
tiple cycles for image reconstruction. However, the recursive
strategy increases the processing time, and the performance
gain is limited. Considering the effectiveness of the group
convolution in [19], Ahn et al. [20] proposed a cascaded con-
volutional network for image super-resolution. They combined
the modified residual block with group convolution, signifi-
cantly reducing the number of model parameters. The methods
in [21], [22] extend the group convolution and propose an
information-distillation block that splits the input feature into

several groups for further processing and then concatenates the
output feature of each group for feature fusion. These methods
have shown remarkable trade-off performance in reducing
model complexity and maintaining distortion quality. With the
split-and-concatenate strategy, Zhao et al. [23] proposed the
pixel-attention mechanism to enhance useful information at
each pixel location. Considering the characteristics of local
regions, Xiao et al. [24] proposed an efficient method for
generating dynamic convolution kernels that can adaptively
extract local features for image super-resolution. Unlike the
above methods, which design efficient modules by hand,
the methods in [25], [26] utilize neural network architecture
search techniques to automatically find efficient model de-
signs. Inspired by the structure reparameterization techniques
[11], [12], Zhang et al. [27] proposed the edge convolutional
block to accelerate the processing speed of deep models.
Even though these deep lightweight image SR models have
demonstrated their effectiveness, in terms of performance and
real-time speed , these methods do not consider the long-range
temporal dependency when applied to video sequences.

B. Deep Video Super-resolution Methods

With the rapid development of video applications, deep
learning-based video processing algorithms [28]–[30] have
become increasingly popular, especially for deep VSR meth-
ods [4]–[6], [8], [31]–[40]. Unlike image SR, VSR needs
to consider object motions and the temporal correspondence
between successive frames. The method in [8] adopted the
efficient spatial transformer for motion compensation and
then combined it with ESPCN [32] to synthesize HR video
sequences. As object motions have the property of being
spatially variant, DUF [33] used a dual-path residual dense
network to predict the residue between the ground-truth frames
and the input LR frames in one path and dynamically upsample
the input LR frames in another path. In [4], it was found that
incorporating an optical flow estimation network into a task-
specific network for joint training, named TOF, is beneficial
to the overall performance. However, its estimated motion
field is different from the ground-truth optical flow, and the
accuracy of the estimated optical flow is very sensitive to
local illumination changes. Instead of using optical flow for
the alignment of video frames, EDVR [6] adopted deformable
convolution [34] to align the features from multiscale levels.
According to [35], deformable convolution cannot effectively
capture long-range dependencies and suffers from unstable
training. In practice, the runtime of deformable convolution
is very slow and cannot satisfy the real-time requirements.
To achieve better efficiency, Fuoli D et al. [5] proposed an
efficient recurrent network to investigate the information from
adjacent frames only for practical VSR tasks. This method
directly inputs the extracted features of the hidden state from
the previous step into the current step for feature fusion so
that information can temporally propagate along the video
sequences. Since VSR is an ill-posed problem, RSDN [36]
introduced structural and detailed information to regularize
the process for generating HR frames. Recently, bidirectional
recurrent methods [37]–[41], such as BasicVSR and its variant
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[37], [40], have shown their effectiveness in VSR, because
these models can fully exploit the information from the
forward and backward directions of the input video sequences.
However, these methods need to acquire whole video se-
quences beforehand, and therefore, they are impractical in
online scenarios. A recent work [42] proposed a unidirectional
method for video denoising that mimics backward behaviors
with the look-ahead mechanism, leading to promising results.
However, this method requires caching future frames for
restoration, so it inevitably introduces undesirable latency in
online situations. It should be noted that video sequences
are transmitted in streaming format in online applications. It
is impractical to capture the information contained in future
frames unless latency is introduced. In this paper, we focus
on online VSR scenarios in which future frames are inacces-
sible and the deployed devices are resource-constrained, such
as for low-configuration devices. Therefore, the latency and
model complexity of online VSR algorithms are significantly
important in online situations.

C. Knowledge Transfer for Image and Video Super-resolution

Knowledge distillation is a well-known technique that
transfers knowledge from a large deep model to a smaller
one. In knowledge distillation, the large model is called
the teacher network, while the smaller model is called the
student network. Recently, Gao et al. [43] proposed distilling
knowledge from a teacher image super-resolution model by
minimizing the distance between the statistical properties (i.e.,
maximum values, mean values, etc.) of the teacher and student
networks’ feature maps . He et al. [44] proposed a feature-
affinity distillation (FAKD) method for image super-resolution
that transfers knowledge by using the correlation matrices of
feature maps, and Lee et al. [45] proposed leveraging the
privileged information from ground-truth images and distilling
knowledge by minimizing the distance between the features
of the teacher network and those of the student network.
Xiao et al. [46] proposed an effective knowledge-distillation
method for video super-resolution that forces the spatial and
temporal characteristics of the teacher network and student
network to be consistent. All these distillation-based super-
resolution models require that the network topology of the
teacher network and the student network are consistent. In
contrast, our proposed CKBG does not restrict the network
structures, which provides more flexibility than distillation-
based methods. In addition, the large teacher models used
in our CKBG-based model are not involved in the training
process, which is significantly different from the distillation-
based methods.

III. THE PROPOSED METHOD

The overall structure of our proposed method is illustrated in
Fig. 2. Our method adopts the recurrent structure, which only
utilizes the information in the current and previous frames.
Therefore, it does not need to cache future frames during the
super-resolution process and saves the time cost. In particular,
the proposed network first uses optical flow to align the
features extracted from the previous frame and then temporally

Fig. 2. Overall pipeline of our proposed method. The “Flow” represents
the flow estimation function. In our proposed method, we employ SPyNet
to compute the optical flow between the current and previous frames. The
“Warp” represents the warping function, which aligns the features extracted
from the previous frame according to the computed flow.

fuses the aligned features with the features extracted from
the current frame. Then, the temporally aggregated features
are forwarded to the cascaded bypass-graft blocks (BGBs) for
feature extraction, where they are constructed based on our
proposed CKBG method. At the output of our model, we adopt
the PixelShuffle operator to upsample the extracted features
and combine them with the bilinearly upscaled LR inputs to
generate the final HR frames.

A. Temporal Aggregation
For temporal aggregation, we first utilize SPyNet [47],

denoted as S(·), to estimate the optical flow f (t−1) between
the current LR frame x(t) and the previous frame x(t−1), which
is computed as follows:

f (t−1) = S(x(t), x(t−1)). (1)

Then, we use the estimated optical flow to perform alignment
in the feature space. The warped feature of the previous frame
is computed as follows:

ĥ(t−1) = Warp(h(t−1), f (t−1)), (2)

where h(t−1) represents the feature extracted from the previ-
ous frame, ĥ(t−1) is the corresponding warped feature, and
Warp(·) represents the warp operator. To avoid significantly
increasing the model complexity, we simply concatenate the
feature extracted from the current frame with the aligned fea-
ture along the channel dimension. Then, a convolutional layer
is used to aggregate the features temporally. The aggregated
feature F (t) is calculated as follows:

F (t) = conv(Cat(conv(x(t)), ĥ(t−1))), (3)

where Cat(·) is the concatenation operator, and conv(·) repre-
sents a 3× 3 convolutional operator.

B. Convolutional Kernel Bypass Graft
1) Push-Forward Mapping: Assume µ and ν are two

probability measures. Given a mapping function T : X → Y ,
if for any measurable set B ⊂ Y , we have the following:

µ(T−1(B)) = ν(B), T−1(B) ⊂ X (4)

Then, ν is said to be the push-forward of µ by T , and we
have ν = T#µ. It is worth noting that push-forward mapping
is a measure-preserving mapping.
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Fig. 3. Overall pipeline of the kernel bypass graft in the preprocessing and training stages. During the preprocessing stage, the external kernels are extracted
from pretrained image SR models. Then, the kernel bases are learned by utilizing the K-means algorithm in the Wasserstein space and principal component
analysis (PCA). During the training phase, the kernel grafts are bypassed to a lightweight video super-resolution model, forming a multibranch structure. The
model parameters, except the grafted kernels, are updated by using the gradient-based optimization method, e.g., SGD. Note: all the parallel convolutional
kernels are merged into a single convolutional kernel in the testing phase.

2) Wasserstein Distance: Suppose µ and ν are probability
measures defined on the Polish spaces X and Y , respectively.
Let

∏
(µ, ν) denote the set of joint distributions of µ and

ν. For each element π ∈
∏
(µ, ν), we have the following:∫

X dπ(x, y) = dν(y) and
∫
Y dπ(x, y) = dµ(x), where x ∈ X

and y ∈ Y . The optimal transportation problem aims to find an
optimal transport mapping with the minimum transportation
cost between two locations x and y, which is defined as
follows:

min
π∈

∏
(µ,ν)

∫
X×Y

c(x, y) dπ(x, y), (5)

where c(x, y) : X ×Y → R+ ∪ {0} denotes the cost function
from x to y. This is the well-known Kantorovich’s formulation.
In this case, π is also called transport mapping, and dπ(x, y)
specifies the transported mass between x and y. Based on this,
the Wasserstein distance [48] is defined as follows:

Wp
p (x, y) =

(
min

π∈
∏

(µ,ν)

∫
X×Y

|x− y|p dπ(x, y)
)1/p

, (6)

where c(x, y) = |x−y|p. If p = 2, it is called the 2-Wasserstein
distance, which is denoted by W2

2 .
Theorem 1: (Bernier’s Theorem). Let µ and ν be two

probability measures on Rn, where µ is continuous and does
not give a probability mass to negligible sets. Then, there
is exactly one measurable map T such that ν = T#µ and
T = ∇ϕ for some convex function ϕ in that any two such
maps coincide with dµ almost everywhere.

The proof of Bernier’s theorem can be found in [48]. This
theorem reveals that the existence of the solution to the 2-
Wasserstein problem is the gradient of a convex function ϕ.
In addition, this theorem guarantees that the obtained optimal
transport mapping function has the measure-preserving prop-
erty. We consider the 2-Wasserstein metric space in this paper
because it has good properties for computation.

3) Wasserstein Barycenter: Assuming that there are N1

probability distributions {µi}N1
i=1 defined in the 2-Wasserstein

metric space, the Fréchet mean of these distributions is defined
as follows:

ν = argmin
ν∈P(Y)

N1∑
i=1

λiW2
2 (µi, ν), (7)

where λi is the weight associated with the i-th probability
distribution, and

∑N1

i=1 λi = 1. The solution ν is also called the
Wasserstein barycenter, which achieves the minimum weighted
2-Wasserstein distance for every µi. It is worth noting that the
Wasserstein distance is based on the optimal transportation
problem, as shown in Eqn. (6). Therefore, the calculation
of the Wasserstein barycenter requires solving the optimal
transportation problem and obtaining the optimal transport
mapping function. Bernier’s theorem shows that the solution to
the optimal transportation problem exists, which is the gradient
of a convex function. In addition, this theorem reveals that the
optimal transport mapping is a push-forward mapping and has
the measure-preserving property. As a result, the Wasserstein
barycenter, based on the optimal transportation, has similar
geometric properties to that of the sample distributions.

4) Kernel Prior Learning and Grafting: As shown in Fig.
3, the proposed CKBG is based on a two-stage learning
framework. During the preprocessing stage, CKBG extracts
convolutional kernels from the pretrained image SR models,
which are called external kernels. Then, it learns a set of
kernel bases with the K-means algorithm in the Wasserstein
space and principal component analysis (PCA). During the
training stage, the “kernel grafts” are obtained by learning
linear representations under the space spanned by the kernel
bases, and the corresponding coefficients are called kernel
codes. The learned “kernel grafts” are bypassed to a branch in
the base VSR network, forming a bypass-graft block (BGB).
It should be noted that the obtained BGB has a multibranch
structure in the training stage, but this structure can be further
converted into a single-path structure for acceleration during
the testing phase. In this section, we elaborate on the learning,
grafting, and testing of the proposed CKBG.

Kernel Prior Learning. A previous study [49] shows that
a small subset of the convolutional filters in a deep SISR net-
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work can significantly contribute to the function of a specific
degradation removal when the LR images contain multiple
degradations. This phenomenon means that the convolutional
kernels of the pretrained image SR model have prior knowl-
edge for reconstruction. In this paper, we propose a method for
extracting the prior knowledge of convolutional kernels from
pretrained image SR models, which is then transferred to a
base VSR model for performance improvement. Specifically,
we focus on a single-degradation setting: LR videos that are
generated by bicubic downsampling kernels without consid-
ering additional blurring and noise. The pretrained image SR
model used in this paper is EDSR [13], which is a classic
image SR model that has achieved promising results. EDSR
is trained on the synthesized dataset, where the LR images
are corrupted by the bicubic downsampling operator. In our
method, all EDSR convolutional kernels are extracted because
they contain considerable prior information for restoring this
degradation. However, the number of extracted kernels is
more than two thousand, and these kernels might have large
redundancy.

To remove redundancy and obtain more representative ker-
nels, we cluster similar kernels by performing the K-means
algorithm in the Wasserstein space, resulting in a set of cluster
centroids. Assuming that K convolutional kernels are obtained
from a pretrained image SR model, denoted as {ki}Ki=1,
the cluster centroids are obtained by solving the following
optimization problem:

argmin
S

M∑
i=1

∑
k∈Si

W2
2 (k, ci), (8)

where S = {S1, · · · , SM} denotes the partition of the ex-
tracted kernels, and M is the number of clusters. ci repre-
sents the i-th cluster centroid in the Wasserstein space. From
Eqn. (7), we can find that the obtained kernel centroid of
each kernel cluster is equivalent to the Wasserstein barycenter
of the associated cluster. In this case, the weights associ-
ated with the Wasserstein distance between the kernels and
the corresponding centroids are all the same. We set the
number of cluster centroids to 256 in this paper and use
the variational method provided in [50] to solve the above
optimization problem. It is worth noting that we perform K-
means clustering in the Wasserstein space rather than in the
Euclidean space because the optimal transport mapping has
the measure-preserving property and can better preserve the
geometric properties (e.g., shape) of the extracted kernels. As
a result, the learned cluster centroids in the Wasserstein space
have a similar geometric structure to the extracted kernels,
which makes them better able to inherit the prior information
from the extracted kernels. Fig. 4(a) illustrates a 1-D example
of six unimodal distributions. As shown in Fig. 4(b), we find
that the centroid distribution computed in the Euclidean space
is severely distorted. In contrast, the geometric properties of
the cluster centroids obtained in the Wasserstein space are
more similar to the original distributions. Since the output
responses are highly related to the geometric properties of
the kernels, the kernel centroids obtained in the Wasserstein
space can avoid generating distortion, leading to similar output

responses. As shown in Fig. 5, the barycenter filter “BM” is
the Wasserstein barycenter of two given kernels K1 and K2,
and it inherits the shape of these two given kernels K1 and
K2. Therefore, given an input signal, the output response of
the barycenter filter is more similar to that of the original
convolutional kernels K1 and K2. In contrast, “AM” represents
the aggregated filter obtained in the Euclidean space, which
cannot preserve the shape of the two given kernels K1 and K2,
so the output response of the “AM” filter is distorted, which
means that this filter cannot preserve the prior information of
the given convolutional kernels.

The proposed CKBG enhances the base VSR model by
learning a set of new kernels and grafting the kernels in
the original network. We called the learned kernels “kernel
grafts”. In this paper, the “kernel grafts” are learned based on
a kernel space constructed from the cluster centroids, which
contain prior knowledge extracted from the pretrained image
SR model. Specifically, this kernel space is represented by
the kernel bases obtained by performing PCA on the cluster
centroids as follows:

CCT = UΣUT , (9)

where C = [c1, · · · , cM ] is the cluster centroid matrix, CT

is its transpose matrix, U = [u1, · · · ,uM ] is the eigenvec-
tor matrix of C, and Σ = Diag(σ1, · · · , σM ) contains the
corresponding eigenvalues sorted in descending order. The
eigenvectors in U are the principal components of the cluster
centroids, which can be used as the potential bases of the
kernel prior subspace. Larger singular values indicate that the
corresponding eigenvectors are more significant.

Kernel Graft. As shown in Fig. 3, several kernel grafts
are generated to bypass the original kernels of a convolutional
layer in the base network. For each kernel graft, we first select
a set of bases to form the kernel space, and the selected bases
are the principal components of the cluster centroids sampled
from the following categorical distribution:

µi ∼ p(Θ), (10)

where Θ = [θ1, · · · , θM ], θi = σi/
∑M

j=1 σj ,∀i = 1, · · · ,M .
This equation implies that the bases are sampled according

to their significance, which corresponds to their singular
values. In other words, those leading principal components are
more likely to be selected as the bases for the kernel space.
Meanwhile, the sampling process introduces the randomness
and increases diversity of kernel grafts.

Finally, the convolutional kernel graft is obtained by learn-
ing a linear combination of the sampled kernel bases. Fig. 6
illustrates the network structure of the proposed BGB during
the training and testing stages. In our implementation, learning
a linear combination of the kernel bases (i.e., 3×3 convolution)
is equivalent to adding a 1× 1 convolution (i.e., the patterned
boxes) before the corresponding kernel bases. During the
training stage, the parameters of the 1 × 1 convolutions in
the bypassed branches are updated simultaneously with the
parameters of the base network, while the kernel bases are
kept fixed.

BGB in Testing. During the testing phase, the multibranch
structure of the BGB can be converted into a single convo-
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(a) (b)
Fig. 4. (a). Samples of different unimodal distributions. (b). The centroids are computed in the Euclidean space (red) and the Wasserstein space (green). The
horizontal axis denotes the support of the distributions, and the vertical axis is the value of the distributions.

Fig. 5. Illustration of a 1-D input signal passing through different convolutional filters. The red curve represents the input signal. The blue curves represent
four convolutional filters. The “AM” is the mean filter of the convolutional filters K1 and K2 in the Euclidean space, and the “BM” is the barycenter filter
of the convolutional filters K1 and K2 in the Wasserstein space. The black curves are the corresponding output responses.

lution according to the linear property of the convolutional
operation. This conversion is called kernel reparameterization
[11], and it involves two types of kernel reparameterizations:
sequential convolutions and parallel convolutions. Specifically,
the consecutive 1 × 1 and 3 × 3 convolutional operators
are first merged to form a single convolution, leading to a
parallel structure. Then, all 3 × 3 convolutional kernels in
the parallel branches are merged into a single convolutional
operator, resulting in a highly efficient single-path structure
[12]. It is worth noting that the re-parameterized kernels at
the testing stage are equivalent to the original multibranch
structure in the training stage. Therefore, the the processing

speed can be significantly accelerated without sacrificing any
performance. More details about the kernel reparameterization
in our proposed method can be found in Appendix A.

C. Loss Function

We adopt the Charbonnier loss function to measure the
distance between the generated frames and the ground-truth
(GT) frames; it is defined as follows:

L =
1

T

T∑
t=1

√wwwI(t)SR − I
(t)
GT

www2

2
+ ϵ, (11)
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Fig. 6. Overall structure of the proposed bypass-graft block (BGB) in the
training stage and testing stage. The convolutional layers marked by orange
are in the base VSR model. The green and blue arrows denote the grafted
branches. “Re-param” denotes kernel reparameterization, which converts the
multibranch structure into a single-path structure. Note: the parameters of the
grafted kernels are not updated during training.

where I
(t)
SR and I

(t)
GT denote the generated SR frame and the

ground-truth frame at the t-th time step, respectively, T is the
number of input LR frames, and ϵ is a hyperparameter.

IV. EXPERIMENTS AND ANALYSIS

Datasets. The REDS dataset [51] and Vimeo-90K dataset
[4], which are two widely used datasets in VSR, are adopted
for training. During the testing stage, the REDS4 dataset [40]
and Vid4 dataset [52] are used for evaluation. In these two
datasets, the upscaling factor is 4, and the bicubic downsam-
pling kernel is used to generate LR video sequences.

Evaluation Metrics. The performance of online VSR algo-
rithms should include three perspectives: model complexity,
latency, and the distortion quality of the generated videos.
We measure model complexity by considering the number
of model parameters, floating point operations per second
(FLOPs), and the number of activations. For distortion qual-
ity assessment, the peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) are adopted for
evaluation. Since our proposed method focuses on online
scenarios, the latency t is very important and is defined as
follows:

t = tcache + trun, (12)

where tcache denotes the time needed to cache the frames
required by the VSR methods, and trun denotes the runtime
required to super-resolve an input frame. If the frame rate is
24 FPS, then the cache time for one frame is 40 ms. It is
worth noting that distortion and latency are well-known trade-
offs. The trade-off score function [53] is used to objectively
measure the performance of the algorithms in online situations
and is defined as follows:

score =
22×PSNR

C × t
, (13)

where C is a constant hyperparameter set to 250.0 in the
experiment, so the trade-off scores of the compared methods
are normalized to the same scale for better comparison. A
model with a higher score can achieve a better trade-off
between distortion quality and latency, so the model is more
effective and applicable in online scenarios.

Implementation Details. In the experiments, we trained
our proposed model using patches of size 80 × 80 ran-
domly cropped from the input video sequences. For data
augmentation, we randomly flipped and rotated the input video
sequences. The number of channels in our model is set to 64,
and the batch size is 8 in the training process. We use Adam
[54] with β1 = 0.9 and β2 = 0.999 to update the weights
of the model. The initial learning rate is 2 × 10−4, and the
cosine annealing strategy is utilized to adaptively adjust the
learning rate during the training process. The total number of
iterations used in training is 6 × 105. We implemented the
proposed method with PyTorch in Tesla V-100 GPUs, and it
took approximately eight days to complete the training.

A. Experiment on the REDS4 and Vid4 Datasets

In this experiment, we compared our proposed method with
EDSR-M [13], PAN [23], RLSP [5], RRN [55], TOF [4],
EDVR [6], BasicVSR [40] and BasicVSR++ [37]. Among
these methods, EDSR-M and PAN are single-image SR models
with lower model complexity. Since online video SR algo-
rithms have a high requirement in terms of latency, these
two methods are appropriate since they do not need to cache
frames and have the ability to process videos in real time .
RLSP and RRN are recurrent-based video SR methods that
have achieved promising results. We adopted RLSP-7-128 in
the experiments; it has seven convolutional blocks, and the
number of channels in the intermediate layers is 128 because
the model complexity of RLSP-7-128 is close to our proposed
CKBG model. RRN only incorporates the information from
the previous frame into the current state for generating HR
frames, so this method is also suitable for online scenarios.
Both methods were originally trained on videos blurred by
Gaussian kernels, but the LR videos are generated by only the
bicubic downsampling operator in our experiments. Therefore,
we need to retrain these two models using publicly available
codes following the default settings for a fair comparison.
The original BasicVSR and BasicVSR++ are bidirectional
VSR models, so they require whole video sequences for
restoration. Therefore, these two methods are not suitable in
online scenarios. We modified BasicVSR and BasicVSR++
by removing the backward part and reducing its model size
for online application, and they are denoted as BasicVSR∗

and BasicVSR++∗, respectively. The implementation details
of BasicVSR∗ and BasicVSR++∗ can be found in Appendix
B. We used the open-source codes provided by the authors to
implement the other compared methods. All of the evaluation
results, including the number of model parameters, the number
of activations, FLOPs, the average PSNR and SSIM, the
required runtime , and the trade-off score, are reported in Table
I. The best results of the online methods are highlighted in
bold, and the second-best results of the online methods are
underlined.

It can be observed that EDVR can achieve promising per-
formance in terms of the PSNR and SSIM on the REDS4 and
the Vid4 datasets, but this model has high computational com-
plexity and requires caching future frames for restoration. In
addition, the runtime of this model is as high as 378 ms, which
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TABLE I
COMPARISON OF THE AVERAGE PSNR, SSIM, MODEL COMPLEXITY, LATENCY, AND TRADE-OFF SCORE OF DIFFERENT VSR METHODS. NOTE THAT “ #
PARAM. ” AND “ # ACT. ” REPRESENT THE NUMBER OF MODEL PARAMETERS AND THE NUMBER OF ACTIVATIONS, RESPECTIVELY. “ ONLINE ” REFERS

TO WHETHER A METHOD CAN BE APPLIED ONLINE. “ TIME ” REPRESENTS THE LATENCY MEASURED ON THE REDS4 DATASET IN A TESLA-V100 GPU.
THE AVERAGE SIZE OF THE INPUT FRAME IS 180× 320. “ RGB ” AND “ Y ” MEAN THAT THE EVALUATION METRICS ARE MEASURED IN THE RGB

SPACE AND Y CHANNEL, RESPECTIVELY. THE BEST RESULTS OF THE ONLINE METHODS ARE HIGHLIGHTED IN BOLD. THE SECOND-BEST RESULTS OF
ONLINE METHODS ARE UNDERLINED.

Methods # Param. FLOPs # Act. Online Time
REDS4 (RGB) Vid4 (Y)

PSNR SSIM Score PSNR SSIM Score

Bicubic - - - - - 26.13 0.7388 - 23.78 0.6347 -

SISR
EDSR-M [13] 1,571 K 114.28 G 201.83 M ✓ 17 ms 28.37 0.8078 6.28 25.31 0.6608 0.19

PAN [23] 272 K 28.29 G 237.88 M ✓ 12 ms 28.41 0.8089 9.41 25.35 0.7306 0.14

VSR

TOF [4] 1,405 K 2,175.25 G 1,251.93 M ✗ 334 ms 27.98 0.7990 0.18 25.89 0.7651 0.01

RLSP [5] 1,154 K 132.94 G 108.74 M ✗ 47 ms 28.53 0.8136 2.83 25.69 0.7530 0.06

EDVR [6] 20,633 K 463.56 G 743.36 M ✗ 378 ms 31.08 0.8800 12.10 27.29 0.8246 0.10

RRN [55] 3,364 K 193.62 G 164.96 M ✓ 20 ms 28.82 0.8234 9.97 25.85 0.7660 0.40

BasicVSR++ [37] 7,320 K 940.43 G 515.62 M ✗ 77 ms 32.29 0.9069 318.10 27.79 0.9500 0.85

BasicVSR++∗ [37] 2,489 K 632.89 G 369.09 M ✗ 41 ms 30.02 0.8594 25.67 26.83 0.8154 0.50

BasicVSR∗ [40] 1,887 K 71.33 G 185.24 M ✓ 32 ms 29.81 0.8535 24.59 26.47 0.7986 0.40

CKBG (ours) 1,750 K 17.85 G 34.09 M ✓ 9 ms 29.73 0.8514 78.25 26.34 0.7857 1.28

Fig. 7. The illustrated image is selected from the REDS4 dataset. The region marked by the red box is generated by different VSR methods for visual
comparison.

Fig. 8. The illustrated image is selected from the Vid4 dataset. The region marked by the red box is generated by different VSR methods for visual comparison.
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does not satisfy the real-time requirements. Therefore, EDVR
is not suitable for online applications. BasicVSR++ achieves
the best performance in terms of the PSNR, the SSIM, and
the trade-off score, but BasicVSR++ adopts a bidirectional
structure and requires access to the whole video sequence
for restoration, which is impractical in online situations.
Compared with the original BasicVSR++, the modified model
BasicVSR++∗ has lower model complexity and processing
time, but the performance is unavoidably degraded. Compared
with BasicVSR∗, BasicVSR++∗ introduces complex modules
based on deformable convolution, which unavoidably increases
the model complexity and runtime. As observed in Table I,
the runtime of BasicVSR++∗ still barely satisfies the real-
time requirement in online situations. It is worth noting that
processing speed is very important in online applications, and
more effort in terms of reducing the runtime of the online VSR
models is needed so that the models can be widely used in
different online scenarios.

As observed, our proposed model has the lowest model
computational complexity because our proposed method re-
quires fewer FLOPs than the other compared methods, in-
cluding the two image SR methods, EDSR-M and PAN. In
terms of distortion quality, our proposed method significantly
outperforms EDSR-M, PAN, TOF, RLSP, and RRN in terms
of the PSNR and SSIM. In addition, we found that the latency
of our proposed method as measured on a Tesla V-100 GPU is
less than 10 ms on the REDS4 dataset, which is much lower
than that of the most efficient image SR model (i.e., PAN).
The average size of the video sequences in the RED4 dataset
is 180×320, and the upscaling factor used in our experiments
is 4, which means that our proposed method takes less than
10 ms to produce an HR video frame. This result means
that our proposed method is significantly efficient and runs
much faster than the other compared VSR methods. Overall,
compared to other efficient image SR and VSR methods, our
proposed method requires extremely low latency and achieves
competitive performance in terms of the distortion quality.
Therefore, our proposed method has a higher trade-off score,
which shows that our proposed method outperforms other
compared methods in online situations.

Figs. 7 and 8 illustrate the visual results of different VSR
methods. For better visualization, a region in each image
marked by a red rectangular box is cropped and enlarged. In
Fig. 7, we can find that the video frames generated by EDSR,
PAN, RLSP, TOF, and RRN suffer from severe distortion and
lack of sharp texture information in the marked dense grids,
while our method can effectively preserve object details (e.g.,
edges and textures). Similarly, in Fig. 8, we can easily observe
that our proposed method has a better ability to generate clear
image content (e.g., the word “REE” in the marked region)
than the other compared methods. Overall, the illustrated
results show that our proposed method has a better ability
to produce images with low distortion, leading to high visual
quality. Please find more visual results in Appendix C.

B. Experiment on Different Hardware Devices
Online VSR methods are usually deployed on client devices,

and the configurations of personal devices vary. In this ex-

periment, we evaluated the latency of different VSR methods
on two devices, an NVIDIA 2080 Ti and 1080 Ti. These
two devices have been widely used in gaming applications,
which require video algorithms to process up to 60 FPS1. The
REDS4 dataset is used in this experiment, where the size of
the generated video frame is 720×1280. The evaluation results
on the 2080 Ti and 1080 Ti are shown in Table II. In addition,
the relationship between the PSNR and the FPS achieved by
different methods is illustrated in Fig. 1. We find that the
latency of our method is significantly lower than that of the
other methods. In particular, for the 2080 Ti, the processing
speed of our proposed method is up to 110 FPS. In addition,
we find that none of the three compared methods can meet the
latency requirements of online gaming on devices equipped
with the 1080 Ti, but our method can effectively process the
video sequences at a rate of up to 80 FPS. It is worth noting
that personal laptops equipped with the 1080 Ti are not highly
configured for online games. This result shows that our method
is less affected by hardware devices and more applicable to
different industrial products.

TABLE II
LATENCY REQUIRED BY DIFFERENT METHODS RUNNING ON VARIOUS

DEVICES. ALL MODELS ARE EVALUATED ON THE REDS4 DATASET, AND
THE AVERAGE SIZE OF THE INPUT FRAME IS 180× 320. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD.

Methods

EDSR-M PAN RRN CKBG (ours)

#Param 1,571 K 272 K 3,364 K 1,750 K

PSNR 28.37 28.41 28.82 29.73

2080Ti

Time 22 ms 16 ms 27 ms 9 ms

FPS 45.45 62.5 37.03 111.11

Gaming ✗ ✓ ✗ ✓

1080Ti

Time 40 ms 36 ms 44 ms 12 ms

FPS 25.00 27.77 22.72 83.33

Gaming ✗ ✗ ✗ ✓

C. Experiments on the Real-world VideoLQ Dataset

We also conducted an experiment on the VideoLQ dataset,
which contains video frames captured in real-world situations.
Since this dataset does not provide the ground-truth videos, we
compared our proposed CKBG with EDSR, RRN, RLSP, and
BasicVSR∗ in terms of the nonreference quality measures, i.e.,
BRISQUE [56] and NIQE [57]. The original BasicVSR and
its variants are not included in the comparison because these
models have a bidirectional structure and are not suitable for
online situations. Table III shows the average BRISQUE and
NIQE scores of different models. We find that our proposed
CKBG model achieves better performance than RRN and
BasicVSR∗. Although RLSP can achieve the best performance,
in terms of BRISQUE, it needs to cache a future frame, which
increases the latency during the restoration process. Fig. 9
illustrates the images generated by different VSR methods.
Since no ground-truth image is provided in the VideoLQ

1https://www.gamingscan.com/best-fps-gaming
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dataset, we only visually compare the quality of the generated
images. We cropped the region marked by the red rectangle
and enlarged it for better comparison. As observed, EDSR,
RRN, RLSP, and BasicVSR∗ suffer from the over-smoothing
issue and struggle to generate the details of dense regions. In
contrast, our proposed CKBG method has a better ability to
generate sharp and detailed information in dense grids, leading
to higher visual quality. It is worth noting that all of the
models are trained on the synthesized data, where LR videos
are generated by the bicubic downsampling kernels. Due to
the degradation mismatch between the training data and the
testing data, the performance of all of the models unavoidably
degrades. Many previous works have extensively studied this
issue [58], [59]. However, in this paper, we focus on reducing
the latency of video super-resolution methods without caching
future frames while maintaining the reconstruction quality
in terms of the PSNR and SSIM in online situations. For
simplicity, we adopted the synthesized datasets to train our
model. Multiple degradations and perceptual quality enhance-
ment are other challenging issues in real-world situations. We
will consider these two issues in our future works.

TABLE III
THE AVERAGE BRISQUE AND NIQE OF DIFFERENT METHODS ON THE

VIDEOLQ DATASET. THE BEST RESULTS OF ONLINE METHODS ARE
HIGHLIGHTED IN BOLD.

EDSR RRN RLSP BasicVSR∗ CKBG

Online ✓ ✓ ✗ ✓ ✓

BRISQUE ↓ 62.035 62.133 59.183 61.587 60.568

NIQE ↓ 6.567 6.786 6.804 6.868 6.834

D. Ablation Study on the Kernel Graft

To evaluate the performance of the kernel bypass graft,
we conducted three experiments, which are described in this
section. In the first experiment, we evaluated the performance
of the kernel bypass graft. Specifically, we trained our pro-
posed method in two different settings for comparison. One
setting is that the model does not adopt any bypass-graft
kernel, denoted as w/o Graft. The second is that the model
adopts the bypass-graft kernel obtained in the Euclidean space,
denoted as E-Kmeans. Our proposed method learns the kernel
graft in the Wasserstein space and is denoted as W-Kmeans.
The average PSNR and SSIM for the different settings on
the REDS4 dataset are shown in Table IV. As observed,
the model with the graft learned in the Euclidean space
achieves comparable results with the model without using
grafts because the grafted kernels learned in the Euclidean
space cannot effectively inherit prior information from the
extracted kernels. In contrast, our model using the kernel graft
learned in the Wasserstein space significantly outperforms
other compared settings because the optimal mapping can help
the learned kernels better preserve the geometric properties.

Then, we conducted experiments to investigate the effect
of different numbers of cluster centroids K on our proposed
method. Specifically, we set K = 64, 128, 256, 512 and ∞,
and the number of channels in the intermediate layers is set

TABLE IV
AVERAGE PSNR AND SSIM OF OUR PROPOSED MODEL WITH DIFFERENT
SETTINGS ON THE REDS4 DATASET. ↑ △ DENOTES THE PERFORMANCE

INCREMENT. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

w/o Graft E-Kmeans W-Kmeans

PSNR 29.58 29.59 29.73

↑ △ 0.00 0.01 0.15

SSIM 0.8480 0.8484 0.8514

↑ △ 0.0000 0.0004 0.0034

to 64. All models with different settings are evaluated on
the REDS4 dataset in terms of the PSNR and SSIM. The
experimental results are shown in Table V. When K = 64,
the number of kernel centroids equals the number of channels
in the intermediate layers. In this case, no sampling technique
is used. When K is larger than 64, the sampling technique
is introduced to generate different grafted kernels each time.
When the number of centroids is increased from 64 to 256, the
performance improves correspondingly because the different
grafted kernels produce different features for reconstruction.
However, when the number of centroids is increased from 256
to 512, the model achieves similar performance because the
cluster centroids are overcomplete. One extreme case involves
setting the number of cluster centroids equal to the number of
extracted kernels, i.e., K = ∞. We find that the corresponding
model cannot produce satisfactory performance because the
kernel information is not effectively aggregated.

TABLE V
AVERAGE PSNR AND SSIM OF THE PROPOSED MODEL WITH DIFFERENT

NUMBERS OF CLUSTER CENTROIDS ON THE REDS4 DATASET. NOTE:
K = ∞ MEANS THAT EACH OBSERVED SAMPLE IS A CLUSTER CENTROID.

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

K=64 K=128 K=256 K=512 K=∞

PSNR 29.60 29.64 29.73 29.70 29.56

SSIM 0.8473 0.8471 0.8514 0.8512 0.8474

Furthermore, we conducted experiments to evaluate the
effect of the proposed CKBG model with different numbers
of bypassed branches. Specifically, we set the number of
branches of our CKBG model B to 0, 1, 2, and 3. The other
configurations remain the same. All models are evaluated on
the REDS4 dataset. The average PSNR and SSIM of the
models with different settings are shown in Table VI. As
observed, when the number of bypassed branches is increased
from 0 to 2, the performance of our proposed model im-
proves significantly because extra information is incorporated
for feature extraction and reconstruction. However, when the
number of bypass branches is increased to 3, the performance
drops slightly because the number of bypassed branches is
greater than the number of main branches in the base model.
The information from the bypassed branches dominates and
suppresses the information from the main base model during
the reconstruction process. We also found that the proposed
CKBG model with three bypassed branches needs ten days to
complete the training process. We will further investigate this
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Fig. 9. The illustrated image is selected from the VideoLQ dataset. The region marked by the red box is generated by different VSR methods for visual
comparison.

issue and accelerate the training speed in our future works.

TABLE VI
AVERAGE PSNR AND SSIM OF THE MODELS WITH DIFFERENT NUMBERS

OF BYPASSED BRANCHES ON THE REDS4 DATASET. ALL RESULTS ARE
EVALUATED ON THE RGB CHANNEL. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

B = 0 B = 1 B = 2 B = 3

PSNR 29.58 29.67 29.73 29.70

SSIM 0.8480 0.8497 0.8514 0.8514

E. Ablation Study on Different Kernels

In this experiment, we compared our proposed bypass-
grafted kernels with other re-parameterized kernels, such as
the ACB kernel [60], RepVGG kernel [12], and ECB kernel
[27]. Specifically, we retrained the model by replacing our
proposed grafted kernel with other re-parameterized kernels.
The average PSNR and SSIM of the different kernel settings
on the REDS4 dataset are shown in Table VII. We find that
our method achieves the best performance compared with
other kernel settings. Fig. 10 illustrates the feature maps
generated from the last convolutional block of the models with
different kernels. We highlighted regions of dense grids with
red and blue rectangular boxes for better visual comparison.
As observed, the generated result of our method looks much
sharper, and the marked region of dense grids has less distorted
content.

TABLE VII
AVERAGE PSNR AND SSIM RESULTS OF DIFFERENT

RE-PARAMETERIZATION CONVOLUTIONAL BLOCKS ON THE REDS4
DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

ACB [60] RepVGG [12] ECB [27] CKBG (ours)

PSNR 29.53 29.51 29.58 29.73

SSIM 0.8471 0.8464 0.8478 0.8514

(a) ACB (b) RepVGG

(c) ECB (d) Ours
Fig. 10. Resulting features generated by ACB, RepVGG, ECB, and our
proposed method, i.e., CKBG.

F. Ablation Study on Knowledge Transfer

We further compare our method with two deep super-
resolution models, i.e., FAKD [44] and FDVDNet [46], which
are based on knowledge distillation. The compared methods
distill prior knowledge from the teacher network based on
the feature map generated from the intermediate layers. In
addition, the teacher networks provide supervised signals
to guide the student networks for training. In contrast, our
proposed CKBG method extracts convolutional kernels from
a pretrained image super-resolution model and grafts the
extracted kernels to a lightweight model before training. The
average PSNR and runtime of the different methods on the
Vid4 dataset are tabulated in Table VIII, where the best
results are highlighted in bold. The runtimes of the different
methods are measured on a device equipped with an NVIDIA
GeForce GTX 1080 Ti. As seen in Table VIII, our method can
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achieve the best performance with the lowest runtime com-
pared with FAKD and FDVDNet. These results demonstrate
that our method is more effective and efficient for video super-
resolution.

TABLE VIII
AVERAGE PSNR AND RUNTIME OF SR MODELS WITH DIFFERENT

KNOWLEDGE TRANSFER METHODS ON THE VID4 DATASET. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD. THE RUNTIME IS MEASURED IN AN

NVIDIA 1080 TI.

Bicubic [60] FAKD [44] FDVDNet [46] CKBG (ours)

PSNR 23.78 25.42 26.14 26.34

Time - 28.31 ms 17.50 ms 12.26 ms

V. CONCLUSION

Online video applications have high requirements for VSR
algorithms in terms of processing latency, model complexity,
and distortion quality, but few of the existing VSR methods
can handle such challenging issues simultaneously. In this
paper, we propose an extremely low-latency VSR method
for online applications. A novel knowledge transfer method,
called the convolutional kernel bypass graft, is proposed. The
proposed CKBG aims to improve the performance of a base
VSR network by bypassing a set of extra kernels containing
rich prior knowledge from external, pretrained SR models (i.e.,
kernel grafts). The experimental results show that our proposed
method can process a video sequence at a rate of up to 110 FPS
and achieve the best trade-off between the distortion quality
and the processing latency compared with other competitive
VSR methods.
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APPENDIX A
KERNEL REPARAMETERIZATION OF THE CKBG

In this paper, we propose a novel kernel knowledge-transfer
method called convolutional kernel graft bypass that enhances
a base VSR model by bypassing the learned “kernel graft”
from a large pretrained model. The resulting network module
is called a bypass graft block (BGB), which has a multibranch
structure for feature extraction. In our method, the proposed
BGB is trained in the form of a multibranch structure, but
the multiple branches can be converted into a convolutional
operator during the testing stage because of the linear prop-
erty of the convolutional operation [12]. This conversion is
called kernel reparameterization, which involves two types
of reparameterizations: sequential convolutions and parallel
convolution, as shown in Fig. 11. Our proposed method
involves two types of kernel reparameterization: sequential
convolution and parallel convolution. During the testing stage,
the 1×1 convolution and 3×3 convolution sequences are first
merged into 3 × 3 convolutions to form a parallel structure.
Then, all 3× 3 convolutional kernels in the parallel branches

are merged into a single convolution kernel. The resulting
structure is a single-path topology. Next, we elaborate on
how to perform kernel reparameterization for sequential and
parallel convolutions.

Type I: Sequential convolution. Suppose we have a sequen-
tial convolution of a 1 × 1 kernel and a K × K kernel,
denoted as F1 ∈ RCin×Cmid×1×1 and F2 ∈ RCmid×Cout×K×K ,
respectively, where Cin, Cmid, and Cout represent the number
of channels of the input features, intermediate features, and
output features, respectively. Given the input features Fin,
the output Fout of the sequential convolution is computed as
follows:

Fout = (Fin ∗ F1 + b1) ∗ F2 + b2, (14)
= Fin ∗ F1 ∗ F2 + b1 ∗ F2 + b2, (15)

where ∗ denotes the convolutional operation, and b1 ∈
R1×Cmid and b2 ∈ R1×Cout are the corresponding bias terms.
According to the linear property of the convolutional operator,
the convolution kernels F1 and F2 in the first term can be
merged as follows:

F̂ = F1 ∗ F2, (16)

where F̂ denotes the resulting convolution kernel with a size
of Cin × Cout × K × K. For the second term b1 ∗ F2, the
corresponding re-parameterized result b̂1 = [b̂1,1, · · · , b̂1,Cmid ]
is computed as follows:

b̂1,cout =

Cmid∑
c=1

K∑
m=1

K∑
n=1

b1,cF
(2)
cout,c,m,n, (17)

where cout = 1, · · · , Cout, and F
(2)
cout,c,m,n represents the kernel

value at position (cout, c,m, n) of convolution kernel F2. Then,
the final re-parameterized bias term is obtained as follows:

b̂ = b̂1 + b2. (18)

As a result, the sequential convolution of a 1× 1 convolution
and a K×K convolution is merged into a single convolutional
kernel after performing kernel reparameterization. Eqn. (15)
can be rewritten as follows:

Fout = Fin ∗ F̂ + b̂. (19)

Type II: Parallel convolution. Assume that the parameter
set of the i-th branch in the ℓ-th BGB is denoted as Θℓ

i =
{F ℓ

i ,b
ℓ
i}, where F ℓ

i ∈ RCin×Cout×K×K and b ∈ R1×Cout rep-
resent the convolution kernel and the bias term, respectively.
Without loss of generality, suppose a BGB has B branches.
Given an input feature map F ℓ

in, the output of the multibranch
block is computed as follows:

F ℓ
out =

B∑
i=1

(F ℓ
in ∗ F ℓ

i + bℓ
i). (20)

Then, we can perform kernel reparameterization based on the
linear property of convolution again. As a result, Eqn. (20) can
be rewritten as follows:

F ℓ
out = F ℓ

in ∗

(
B∑

b=1

F ℓ
b

)
+

(
B∑

b=1

bℓ
b

)
, (21)

= F ℓ
inF̂

ℓ + b̂ℓ, (22)
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Fig. 11. Illustration of the kernel reparameterization of sequential convolutions and parallel convolutions during the testing stage. The dotted lines represent
the grafted branches. The grafted kernels marked by orange are fixed during the training stage. The re-parameterized kernels are marked in green.

Fig. 12. The illustrated image “City 00000033” is selected from the Vid4 dataset. The region marked by the red box is generated by different VSR methods
for visual comparison.

where F̂ ℓ =
∑B

b=1 F
ℓ
b and b̂ℓ =

∑B
b=1 b

ℓ
j are the correspond-

ing re-parameterized convolutional kernel and the bias term,
respectively. As a result, the multibranch structure is converted
into a single-path structure during the testing stage.

Since kernel reparameterization relies on the linear property
of the convolution operation, the re-parameterized kernel in
the testing stage is equivalent to the multibranch structure
in the training stage without sacrificing any performance.
The resulting single-path structure is very efficient, so the
processing speed can be significantly accelerated.

APPENDIX B
IMPLEMENTATION DETAILS OF BASICVSR∗ AND

BASICVSR++∗

BasicVSR [40] and BasicVSR++ [37] are bidirectional
models that have shown their effectiveness for VSR. However,
the original BasicVSR and BasicVSR++ cannot be applied
to online video applications because they require access to
the whole video sequence, which is impractical in online sce-
narios. To make BasicVSR and BasicVSR++ meet the online

requirements, we modify BasicVSR and BasicVSR++, which
are denoted as BasicVSR∗ and BasicVSR++∗. Specifically, we
first remove the backward part of the model so that it does not
need to cache future frames. To meet the requirement of low
model complexity, we reduce the number of residual blocks
from 60 to 15, and the number of feature channels is reduced
from 64 to 32. The other configurations remain the same as
the original model for training.

APPENDIX C
MORE VISUAL RESULTS

In Fig. 12 and 13, we provide additional visual results
generated by different image/video SR methods for visual
comparison. As illustrated, our proposed method has a better
ability to preserve the shapes and textures of objects in
the images than the other compared methods. In addition,
the images generated by our proposed method contain less
distorted content than those produced by the other compared
methods, leading to the best visual quality.
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Fig. 13. The illustrated image “Walk 00000045” is selected from the Vid4 dataset. The region marked by the red box is generated by different VSR methods
for visual comparison.
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